Skip to main content
Log in

Pathogenese, Diagnose und Klinik der Fuchs-Endotheldystrophie

Pathogenesis and diagnostic evaluation of Fuchs’ endothelial corneal dystrophy

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

In den letzten Jahren wurde die Therapie der Fuchs-Endotheldystrophie rasch weiterentwickelt. Mit besserem Verständnis zu optischen und morphologischen Veränderungen muss auch die Diagnostik im Hinblick auf die Indikationsstellung zur Keratoplastik neu durchdacht werden.

Material und Methoden

Diese Arbeit fasst die aktuellen Erkenntnisse zur Fuchs-Endotheldystrophie für Kliniker und Wissenschaftler zusammen, um eine standardisierte klinische Evaluation, basierend auf den fortschreitenden und zum Teil irreversiblen Strukturveränderungen der gesamten Hornhaut, zu ermöglichen.

Ergebnisse

Standardisierbare diagnostische Verfahren erlauben das Erkennen von frühen und zum Teil irreversiblen Strukturveränderungen, die noch vor spaltlampenmikroskopischen Zeichen auftreten. Bei Patienten mit Fuchs-Endotheldystrophie liegt nicht nur eine Veränderung des Hochkontrastvisus vor, sondern erhöhte Blendempfindlichkeit kann gemessen werden. Visusrelevante Einschränkungen des Patienten im Alltag, quantifiziert z. B. mittels V‑FUCHS, einem neuen „Visual Function and Corneal Health Status“-Instrument, können bei der Therapieentscheidung helfen.

Diskussion

Eine Einteilung der Fuchs-Endotheldystrophie mittels Spaltlampe in ödematös und nichtödematös ist veraltet in Anbetracht der verbesserter Therapiemöglichkeiten. Die standardisierte Untersuchung individueller Einschränkungen, Strukturveränderungen und optischer Qualität wird in der klinischen Routine immer wichtiger.

Abstract

Background

Following new treatment options for Fuchs’ endothelial corneal dystrophy, our understanding of optical and structural changes in the patient’s cornea is also starting to improve.

Objective

To provide an update on clinical evaluation of Fuchs’ dystrophy.

Material and methods

Standardized approaches to evaluate patients with Fuchs dystrophy in routine practice and research are discussed, accounting for the progressive and partially irreversible structural changes in all corneal layers.

Results

Early structural changes in the cornea can be detected before clinical edema becomes visible on slit-lamp exam. Optical limitations resulting from these structural changes can be quantified not only with high-contrast acuity but also with glare or contrast sensitivity tests. Characteristic vision-related limitations of patients with Fuchs dystrophy can, e.g., be assessed with V-FUCHS, a Fuchs dystrophy-specific “Visual Function and Corneal Health Status” instrument for patient-reported outcomes.

Conclusion

Clinical grading of Fuchs dystrophy in an edematous and a non-edematous stage is outdated. Better therapy options and our improved understanding of progressive changes in the entire cornea require a standardized assessment of optical and structural changes and patient-reported limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Afshari NA, Igo RP Jr., Morris NJ et al (2017) Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy. Nat Commun 8:14898

    Article  CAS  Google Scholar 

  2. AG Wacker. https://www.uniklinik-freiburg.de/augenklinik.html

  3. Ahuja Y, Baratz KH, Mclaren JW et al (2012) Decreased corneal sensitivity and abnormal corneal nerves in Fuchs endothelial dystrophy. Cornea 31:1257–1263

    Article  Google Scholar 

  4. Amin SR, Baratz KH, Mclaren JW et al (2014) Corneal abnormalities early in the course of Fuchs’ endothelial dystrophy. Ophthalmology 121:2325–2333

    Article  Google Scholar 

  5. Baratz KH, Tosakulwong N, Ryu E et al (2010) E2-2 protein and Fuchs’s corneal dystrophy. N Engl J Med 363:1016–1024

    Article  CAS  Google Scholar 

  6. Calandra A, Chwa M, Kenney MC (1989) Characterization of stroma from Fuchs’ endothelial dystrophy corneas. Cornea 8:90–97

    Article  CAS  Google Scholar 

  7. Van Der Meulen IJ, Patel SV, Lapid-Gortzak R et al (2011) Quality of vision in patients with Fuchs endothelial dystrophy and after descemet stripping endothelial keratoplasty. Arch Ophthalmol 129:1537–1542

    Article  Google Scholar 

  8. Doughty MJ, Zaman ML (2000) Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol 44:367–408

    Article  CAS  Google Scholar 

  9. Engler C, Kelliher C, Spitze AR et al (2010) Unfolded protein response in Fuchs endothelial corneal dystrophy: a unifying pathogenic pathway? Am J Ophthalmol 149:194–202.e192

    Article  CAS  Google Scholar 

  10. Flockerzi E, Maier P, Bohringer D et al (2018) Trends in corneal transplantation from 2001 to 2016 in Germany: a report of the DOG-section cornea and its keratoplasty registry. Am J Ophthalmol 188:91–98

    Article  Google Scholar 

  11. Fuchs E (1910) Dystrophia epithelialis corneae. Graefes Arch Clin Exp Ophthalmol 76:478–508

    Article  Google Scholar 

  12. Gross NJ, Bohringer D, Maier P et al (2015) Perforating keratoplasty versus descemet stripping automated endothelial keratoplasty in the partner eye: Functional results and patient satisfaction. Ophthalmologe 112:848–853

    Article  CAS  Google Scholar 

  13. Heinzelmann S, Maier P, Bohringer D et al (2015) Cystoid macular oedema following Descemet membrane endothelial keratoplasty. Br J Ophthalmol 99:98–102

    Article  Google Scholar 

  14. Heinzelmann S, Bohringer D, Eberwein P et al (2016) Outcomes of descemet membrane endothelial keratoplasty, descemet stripping automated endothelial keratoplasty and penetrating keratoplasty from a single centre study. Graefes Arch Clin Exp Ophthalmol 254:515–522

    Article  CAS  Google Scholar 

  15. Heinzelmann S, Bohringer D, Eberwein P et al (2017) Graft dislocation and graft failure following Descemet membrane endothelial keratoplasty (DMEK) using precut tissue: a retrospective cohort study. Graefes Arch Clin Exp Ophthalmol 255:127–133

    Article  Google Scholar 

  16. Johnson DH, Bourne WM, Campbell RJ (1982) The ultrastructure of descemet’s membrane. I. Changes with age in normal corneas. Arch Ophthalmol 100:1942–1947

    Article  CAS  Google Scholar 

  17. Khadka J, Mcalinden C, Pesudovs K (2013) Quality assessment of ophthalmic questionnaires: review and recommendations. Optom Vis Sci 90:720–744

    Article  Google Scholar 

  18. Koch DD, Ali SF, Weikert MP et al (2012) Contribution of posterior corneal astigmatism to total corneal astigmatism. J Cataract Refract Surg 38:2080–2087

    Article  Google Scholar 

  19. Kopplin LJ, Przepyszny K, Schmotzer B et al (2012) Relationship of Fuchs endothelial corneal dystrophy severity to central corneal thickness. Arch Ophthalmol 130:433–439

    Article  Google Scholar 

  20. Krachmer JH, Purcell JJ Jr., Young CW et al (1978) Corneal endothelial dystrophy. A study of 64 families. Arch Ophthalmol 96:2036–2039

    Article  CAS  Google Scholar 

  21. Kwon RO, Price MO, Price FW Jr. et al (2010) Pentacam characterization of corneas with Fuchs dystrophy treated with descemet membrane endothelial keratoplasty. J Refract Surg 26:972–979

    Article  Google Scholar 

  22. Lang SJ, Bischoff M, Bohringer D et al (2014) Analysis of the changes in keratoplasty indications and preferred techniques. PLoS ONE 9:e112696

    Article  Google Scholar 

  23. Maier P, Reinhard T (2017) Long-term clear graft survival and chronic endothelial cell loss following posterior lamellar keratoplasty. In: Jun AL, Cursiefen C (Hrsg) Current Treatment Options for Fuchs Endothelial Dystrophy, Springer, Cham, S 51–57

    Google Scholar 

  24. Maier P, Reinhard T, Cursiefen C (2013) Descemet stripping endothelial keratoplasty—rapid recovery of visual acuity. Dtsch Arztebl Int 110:365–371

    PubMed  PubMed Central  Google Scholar 

  25. Mattaei M, Schrittenlocher S, Hos D, Siebelmann S (2018) Zehn Jahre „Descemet membrane endothelial keratoplasty“ bei Fuchs-Dystrophie. Ophthalmologe. https://doi.org/10.1007/s00347-018-0800-3

  26. Mclaren JW, Patel SV (2012) Modeling the effect of forward scatter and aberrations on visual acuity after endothelial keratoplasty. Invest Ophthalmol Vis Sci 53:5545–5551

    Article  Google Scholar 

  27. Mclaren JW, Bachman LA, Kane KM et al (2014) Objective assessment of the corneal endothelium in Fuchs’ endothelial dystrophy. Invest Ophthalmol Vis Sci 55:1184–1190

    Article  Google Scholar 

  28. Reinhard T, Bohringer D, Huschen D et al (2002) Chronic endothelial cell loss of the graft after penetrating keratoplasty: influence of endothelial cell migration from graft to host. Klin Monbl Augenheilkd 219:410–416

    Article  Google Scholar 

  29. Schoenberg ED, Price FW Jr., Miller J et al (2015) Refractive outcomes of Descemet membrane endothelial keratoplasty triple procedures (combined with cataract surgery). J Cataract Refract Surg 41:1182–1189

    Article  Google Scholar 

  30. Seitzman GD, Gottsch JD, Stark WJ (2005) Cataract surgery in patients with Fuchs’ corneal dystrophy: expanding recommendations for cataract surgery without simultaneous keratoplasty. Ophthalmology 112:441–446

    Article  Google Scholar 

  31. Sun SY, Wacker K, Baratz KH et al (2018) Determining subclinical edema in Fuchs endothelial corneal dystrophy. Revised classification using Scheimpflug tomography for preoperative assessment. Ophthalmology. https://doi.org/10.1016/j.ophtha.2018.07.005 (in press)

    Article  PubMed  Google Scholar 

  32. Vogt A (1921) Weitere Ergebnisse der Spaltlampenmikroskopie des vorderen Bulbusabschnittes. Albrecht Von Graefes Arch Ophthalmol 106:69

    Article  Google Scholar 

  33. Wacker K, Mclaren JW, Amin SR et al (2015) Corneal high-order aberrations and backscatter in Fuchs’ endothelial corneal dystrophy. Ophthalmology 122:1645–1652

    Article  Google Scholar 

  34. Wacker K, Mclaren JW, Patel SV (2015) Directional posterior corneal profile changes in Fuchs’ endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 56:5904–5911

    Article  Google Scholar 

  35. Wacker K, Baratz KH, Maguire LJ et al (2016) Descemet stripping endothelial keratoplasty for Fuchs’ endothelial corneal dystrophy: five-year results of a prospective study. Ophthalmology 123:154–160

    Article  Google Scholar 

  36. Wacker K, Mclaren JW, Kane KM et al (2016) Corneal hydration control in Fuchs’ endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 57:5060–5065

    Article  Google Scholar 

  37. Wacker K, McLaren JW, Patel SV (2017) Optical and anatomical changes in FED corneas. In: Jun AL, Cursiefen C (Hrsg) Current Treatment Options for Fuchs Endothelial Dystrophy, Springer, Cham, S 51–57

    Google Scholar 

  38. Wacker K, Baratz KH, Bourne WM et al (2018) Patient-reported visual disability in Fuchs’ endothelial corneal dystrophy measured by the visual function and corneal health status (V-FUCHS) instrument. Ophthalmology. https://doi.org/10.1016/j.ophtha.2018.06.018 (in press)

    Article  PubMed  Google Scholar 

  39. Wacker K, Baratz KH, Fautsch MP et al (2018) Medical and semi-surgical treatments for Fuchs endothelial corneal dystrophy. Klin Monbl Augenheilkd 235(6):709–713. https://doi.org/10.1055/a-0577-7953

    Article  PubMed  Google Scholar 

  40. Wieben ED, Aleff RA, Tosakulwong N et al (2012) A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dystrophy. PLoS ONE 7:e49083

    Article  CAS  Google Scholar 

  41. Wieben ED, Aleff RA, Tang X et al (2017) Trinucleotide repeat expansion in the transcription factor 4 (TCF4) gene leads to widespread mRNA splicing changes in Fuchs’ endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 58:343–352

    Article  Google Scholar 

  42. Wilson SE, Bourne WM (1988) Fuchs’ dystrophy. Cornea 7:2–18

    Article  CAS  Google Scholar 

  43. Zoega GM, Fujisawa A, Sasaki H et al (2006) Prevalence and risk factors for cornea guttata in the reykjavik eye study. Ophthalmology 113:565–569

    Article  Google Scholar 

Download references

Förderung

Forschungsunterstützung: Berta-Ottenstein-Programme for Clinican Scientists, Medizinische Fakultät, Universität Freiburg (K.W.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Wacker.

Ethics declarations

Interessenkonflikt

K. Wacker, T. Reinhard und P. Maier geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wacker, K., Reinhard, T. & Maier, P. Pathogenese, Diagnose und Klinik der Fuchs-Endotheldystrophie. Ophthalmologe 116, 221–227 (2019). https://doi.org/10.1007/s00347-018-0799-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-018-0799-5

Schlüsselwörter

Keywords

Navigation