Advertisement

Physische Aktivität bei älteren Menschen mit Augenerkrankungen

Anwendbarkeit von Armbandakzelerometern
  • M. Heinemann
  • S. G. Welker
  • F. G. Holz
  • R. P. Finger
Originalien

Zusammenfassung

Hintergrund und Fragestellung

Physische Aktivität (PA) beeinflusst altersabhängige Erkrankungen, ist jedoch schwierig zu messen. Es wurde die Akzeptanz von Armbandakzelerometern (ACC) bei älteren Patienten mit Augenerkrankungen evaluiert sowie ein Vergleich mit einem validierten Aktivitätsfragebogen untersucht.

Material und Methoden

50 Probanden wurden klinisch untersucht, mit dem International Physical Activity Questionnaire (IPAQ) zu ihrer PA befragt und haben im Anschluss ein ACC erst 7 und dann 30 Tage getragen. Daten wurden deskriptiv ausgewertet und Einflussfaktoren auf PA mit linearen Modellen untersucht.

Ergebnisse

Volle Akzeptanz der ACC lag nach 7 Tagen bei 94 % und nach 30 Tagen bei 74 %. Von 36 Probanden konnten Daten für beide Trageintervalle ausgewertet werden. Der IPAQ (z. B. moderate Aktivität: 1183,4 ± 864,3 min/Woche) misst im Vergleich zum ACC über 7 und 30 Tage (248,5 ± 266,0 min/Woche und 248,8 ± 190,6 min/Woche) wesentlich höhere Werte (p < 0,05 für beide Trageintervalle). Die ACC-Daten über 7 und 30 Tage waren vergleichbar (starke PA: 25,4 ± 33,7 min/Woche und 22,5 ± 29,0 min/Woche). In multiplen, linearen Modellen war BMI mit 7‑tägiger moderater Aktivität (β = −0,22 [95 %-KI: −21,7; −1,9]; p = 0,021) und starker Aktivität (β = −0,35 [95 %-KI: −4,3; −0,5]; p = 0,033), sowie 30-tägiger starker Aktivität (β = −0,45 [95 %-KI: −5,9; −0,1]; p = 0,044) assoziiert. Andere Faktoren wie Visus des besseren Auges, Alter und Geschlecht waren nicht assoziiert.

Diskussion

Akzelerometer werden von älteren Menschen mit Augenerkrankungen zur Messung der PA akzeptiert. Die Ergebnisse sind genauer, d. h. haben eine geringere Schwankungsbreite, und messen eine niedrigere PA als ein vergleichbarer PA-Fragebogen. Eine 7‑tägige Tragephase ist ausreichend für die Erfassung der durchschnittlichen PA bei älteren Menschen und damit gut in Studien anwendbar.

Schlüsselwörter

Physische Aktivität Akzelerometer AMD Akzeptanz IPAQ 

Physical activity in older persons with eye diseases

Applicability of wrist-worn accelerometer

Abstract

Background and objectives

Physical activity (PA) impacts age-related diseases but its measurement is difficult. The acceptance of wrist-worn accelerometers (ACC) in older patients with eye diseases was evaluated and the results were compared with a validated activity questionnaire.

Materials and methods

In this study 50 patients underwent a clinical examination and were interviewed with the International Physical Activity Questionnaire (IPAQ). They then wore an ACC for 7 days and then for 30 days. After descriptive analysis of the data, influencing factors on the PA were assessed using multiple, linear models.

Results

A total of 94% of participants wore the ACC for 7 days and 74% for 30 days. For 36 patients complete data were available. In comparison, IPAQ (e. g. moderate PA: 1183.4 ± 864.3 min/week) vs. ACC across 7 and 30 days (248.5 ± 266.0 min/week and 248.8 ± 190.6 min/week, respectively) showed substantially higher results (p < 0.05 for both intervals). The ACC data across 7 and 30 days were comparable (e. g. high PA: 25.4 ± 33.7 min/week and 22.5 ± 29.0 min/week). In multiple, linear models body mass index (BMI) was associated with 7 days moderate activity (β = −0.22 [95% confidence intervals CI: −21.7; −1.9]; p = 0.021) and vigorous activity (β = −0.35 [95% CI: −4.3; −0.5]; p = 0.033) as well as 30 days vigorous activity (β = −0.45 [95% CI: −5.9; −0.1]; p = 0.044). Other factors such as better visual acuity, age and gender were not associated.

Conclusion

The use of ACCs are acceptable to the majority of older patients with eye diseases. The results of ACC are more precise with lower variation, and much lower PA than those of a comparable activity questionnaire. Measurement over 7 days is sufficient for capturing the average PA in older patients and can be easily applied in clinical trials.

Keywords

Physical activity Accelerometers AMD Acceptance IPAQ 

Notes

Förderung

Diese Studie wurde von der German Scholars Organization/Else Kröhner Fresenius Stiftung gefördert (GSO/EKFS 16).

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Heinemann, S.G. Welker, F.G. Holz und R.P. Finger geben an, dass kein Interessenkonflikt besteht.

Alle im Manuskript beschriebenen Untersuchungen am Menschen wurden mit der Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht, sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Literatur

  1. 1.
    Beeby S (2004) MEMS mechanical sensors. Artech House microelectromechanical systems (MEMS) series. Artech House, BostonGoogle Scholar
  2. 2.
    Bonn SE, Bergman P, Trolle Lagerros Y, Sjölander A, Bälter K (2015) A validation study of the web-based physical activity questionnaire active-Q against the GENEA accelerometer. JMIR Res Protoc 4(3):e86.  https://doi.org/10.2196/resprot.3896 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chieffi S, Messina G, Villano I, Messina A, Valenzano A, Moscatelli F, Salerno M, Sullo A, Avola R, Monda V, Cibelli G, Monda M (2017) Neuroprotective effects of physical activity: evidence from human and animal studies. Front Neurol 8:188.  https://doi.org/10.3389/fneur.2017.00188 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dillon CB, Fitzgerald AP, Kearney PM, Perry IJ, Rennie KL, Kozarski R, Phillips CM (2016) Number of days required to estimate habitual activity using wrist-worn GENEActiv accelerometer: a cross-sectional study. PLoS ONE 11(5):e109913.  https://doi.org/10.1371/journal.pone.0109913 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P, Eston RG (2011) Validation of the GENEA accelerometer. Med Sci Sports Exerc 43(6):1085–1093.  https://doi.org/10.1249/MSS.0b013e31820513be CrossRefPubMedGoogle Scholar
  6. 6.
    Garriguet D, Tremblay S, Colley RC (2015) Comparison of physical activity adult questionnaire results with accelerometer data. Health Rep 26(7):11–17PubMedGoogle Scholar
  7. 7.
    Hamer M, Lavoie KL, Bacon SL (2014) Taking up physical activity in later life and healthy ageing: the English longitudinal study of ageing. Br J Sports Med 48(3):239–243.  https://doi.org/10.1136/bjsports-2013-092993 CrossRefPubMedGoogle Scholar
  8. 8.
    Herrmann P, Holz FG, Charbel Issa P (2013) Ätiologie und Pathogenese der altersabhängigen Makuladegeneration. Ophthalmologe 110(4):377–389.  https://doi.org/10.1007/s00347-012-2779-5 CrossRefPubMedGoogle Scholar
  9. 9.
    Innerd P, Catt M, Collerton J, Davies K, Trenell M, Kirkwood TBL, Jagger C (2015) A comparison of subjective and objective measures of physical activity from the Newcastle 85+ study. Age Ageing 44(4):691–694.  https://doi.org/10.1093/ageing/afv062 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Klein R, Lee KE, Gangnon RE, Klein BEK (2014) Relation of smoking, drinking, and physical activity to changes in vision over a 20-year period: the Beaver Dam Eye Study. Ophthalmology 121(6):1220–1228.  https://doi.org/10.1016/j.ophtha.2014.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Knudtson MD, Klein R, Klein BEK (2006) Physical activity and the 15-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Br J Ophthalmol 90(12):1461–1463.  https://doi.org/10.1136/bjo.2006.103796 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lewis LS, Hernon J, Clark A, Saxton JM (2017) Validation of the IPAQ against different accelerometer cut-points in older cancer survivors and adults at risk of cancer. J Aging Phys Act.  https://doi.org/10.1123/japa.2016-0207 PubMedGoogle Scholar
  13. 13.
    Loprinzi PD, Pariser G, Ramulu PY (2014) Accelerometer-assessed sedentary and physical activity behavior and its association with vision among U.S. adults with diabetes. J Phys Act Health 11(6):1156–1161.  https://doi.org/10.1123/jpah.2012-0354 CrossRefPubMedGoogle Scholar
  14. 14.
    Loprinzi PD, Swenor BK, Ramulu PY (2015) Age-related macular degeneration is associated with less physical activity among US adults: cross-sectional study. PLoS ONE 10(5):e125394.  https://doi.org/10.1371/journal.pone.0125394 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    McGuinness MB, Karahalios A, Simpson JA, Guymer RH, Robman LD, Hodge AM, Cerin E, Giles GG, Finger RP (2016) Past physical activity and age-related macular degeneration: the Melbourne Collaborative Cohort Study. Br J Ophthalmol 100(10):1353–1358.  https://doi.org/10.1136/bjophthalmol-2015-307663 CrossRefPubMedGoogle Scholar
  16. 16.
    Mercer K, Giangregorio L, Schneider E, Chilana P, Li M, Grindrod K (2016) Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: a mixed-methods evaluation. JMIR Mhealth Uhealth 4(1):e7.  https://doi.org/10.2196/mhealth.4225 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Munch IC, Linneberg A, Larsen M (2013) Precursors of age-related macular degeneration: associations with physical activity, obesity, and serum lipids in the inter99 eye study. Invest Ophthalmol Vis Sci 54(6):3932–3940.  https://doi.org/10.1167/iovs.12-10785 CrossRefPubMedGoogle Scholar
  18. 18.
    Noor, Mohamad Z, Smith AJ, Smith SS, Nissen LM (2013) Feasibility and acceptability of wrist actigraph in assessing sleep quality and sleep quantity: A home-based pilot study in healthy volunteers. Health 5(8A2):63–72CrossRefGoogle Scholar
  19. 19.
    Jr Paffenbarger RS, Hyde RT, Wing AL, Hsieh CC (1986) Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med 314(10):605–613.  https://doi.org/10.1056/NEJM198603063141003 CrossRefPubMedGoogle Scholar
  20. 20.
    Sabia S, Cogranne P, van Hees VT, Bell JA, Elbaz A, Kivimaki M, Singh-Manoux A (2015) Physical activity and adiposity markers at older ages: accelerometer vs questionnaire data. J Am Med Dir Assoc 16(5):438.e7.  https://doi.org/10.1016/j.jamda.2015.01.086 CrossRefGoogle Scholar
  21. 21.
    Schwarzfischer P, Weber M, Gruszfeld D, Socha P, Luque V, Escribano J, Xhonneux A, Verduci E, Mariani B, Koletzko B, Grote V (2017) BMI and recommended levels of physical activity in school children. BMC Public Health 17(1):595.  https://doi.org/10.1186/s12889-017-4492-4 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wanner M, Probst-Hensch N, Kriemler S, Meier F, Autenrieth C, Martin BW (2016) Validation of the long international physical activity questionnaire: influence of age and language region. Prev Med Rep 3:250–256.  https://doi.org/10.1016/j.pmedr.2016.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Watkinson C, van Sluijs EM, Sutton S, Hardeman W, Corder K, Griffin SJ (2010) Overestimation of physical activity level is associated with lower BMI: a cross-sectional analysis. Int J Behav Nutr Phys Act 7:68.  https://doi.org/10.1186/1479-5868-7-68 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    White T, Westgate K, Wareham NJ, Brage S (2016) Estimation of physical activity energy expenditure during free-living from wrist accelerometry in UK adults. PLoS ONE 11(12):e167472.  https://doi.org/10.1371/journal.pone.0167472 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Williams PT (2009) Prospective study of incident age-related macular degeneration in relation to vigorous physical activity during a 7-year follow-up. Invest Ophthalmol Vis Sci 50(1):101–106.  https://doi.org/10.1167/iovs.08-2165 CrossRefPubMedGoogle Scholar
  26. 26.
    Worls Health Organization (2010) Global recommendations on physical activity for health. World Health Organization. http://www.who.int/dietphysicalactivity/publications/9789241599979/en/. Zugegriffen: 4. Juli 2017Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • M. Heinemann
    • 1
  • S. G. Welker
    • 1
  • F. G. Holz
    • 1
  • R. P. Finger
    • 1
  1. 1.Universitäts-Augenklinik BonnBonnDeutschland

Personalised recommendations