Skip to main content
Log in

Konfokal mikroskopisch sichtbarer kornealer Nervenplexus als Biomarker für systemische Erkrankungen

Blick vom kornealen Nervenplexus auf die Erkrankung Diabetes mellitus

Confocal microscope examination of the corneal nerve plexus as biomarker for systemic diseases

View from the corneal nerve plexus on diabetes mellitus disease

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Schätzungsweise 50 % der Patienten mit Diabetes mellitus leiden an einer Polyneuropathie, die häufig zu spät erkannt wird. Daher stellt sich die Frage, ob Bildgebungsverfahren am Auge wie die optische Kohärenztomographie der Retina und die konfokale Mikroskopie der Kornea zur Diagnostik und Verlaufskontrolle von neurodegenerativen Veränderungen bei Patienten mit Diabetes mellitus geeignet sind. Dies konnte durch De Clerck et al. mittels einer systematischen Zusammenfassung von Studien bestätigt werden: 11 davon wurden hinsichtlich der kornealen Konfokalmikroskopie weiter ausgewertet. Nach etwa 15 Jahren eines zumeist im juvenilen Alter manifestierten Typ-1-Diabetes mellitus waren die korneale Nervenfaserlänge und -dichte bereits reduziert, obwohl noch keine klinisch manifeste Neuropathie vorlag. Eine Untersuchung zu diesem Zeitpunkt erscheint sinnvoll. Der Typ-2-Diabetes mellitus im höheren Lebensalter ist zumeist mit einem metabolischen Syndrom vergesellschaftet und der Manifestationszeitpunkt der Erkrankung unbekannt. Bereits bei Diagnosestellung eines Typ-2-Diabetes mellitus sollte daher eine korneale Konfokalmikroskopie durchgeführt werden. Patienten mit längerer Krankheitsdauer und deutlichen Veränderungen des kornealen Nervenplexus zeigten bereits klinische Symptome einer Polyneuropathie und litten häufig an einer proliferativen Retinopathie. Die Zugänglichkeit des Auges mittels nichtinvasiver optischer Verfahren sollte im Rahmen der Behandlung von Patienten mit Diabetes mellitus verstärkt genutzt werden, um Risikopatienten frühzeitig zu identifizieren. Weiterführende Longitudinalstudien sind von hoher Notwendigkeit.

Abstract

It is estimated that approximately 50% of patients with diabetes mellitus suffer from polyneuropathy, which is frequently diagnosed too late. Consequently, the question arises whether imaging procedures of the eye, namely optical coherence tomography of the retina and confocal microscopy of the cornea are suitable for the diagnostics and follow-up control of neurodegenerative changes in patients with diabetes mellitus. De Clerck and co-workers could demonstrate this by a systematic review of studies. Of these studies 11 were further evaluated with respect to corneal confocal microscopy. Approximately 15 years after juvenile type 1 diabetes a reduction of corneal nerve fiber length and density was observed, although clinical signs of neuropathy were absent. At this stage an examination seems reasonable. Type 2 diabetes mellitus in the elderly is often associated with a metabolic syndrome and its time of manifestation remains unknown; therefore, corneal confocal microscopy should be implemented at the time of diagnosis of type 2 diabetes. Patients with long disease duration and significant changes in the corneal nerve plexus already showed clinical signs of polyneuropathy and often suffered from proliferative retinopathy. The accessibility of the eye for non-invasive optical modalities should be used more often in the treatment of patients with diabetes mellitus for early identification of patients at risk. Further longitudinal studies are highly necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 1
Abb. 2

Literatur

  1. Ahmed A, Bril V, Orszag A et al (2012) Detection of diabetic sensorimotor polyneuropathy by corneal confocal microscopy in type 1 diabetes: a concurrent validity study. Diabetes Care 35:821–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baltrusch S (2016) Ophthalmological monitoring of diabetic neuropathy in a mouse model. Klin Monbl Augenheilkd 233:1313–1319

    Article  CAS  PubMed  Google Scholar 

  3. Bitirgen G, Ozkagnici A, Malik RA et al (2014) Corneal nerve fibre damage precedes diabetic retinopathy in patients with type 2 diabetes mellitus. Diabet Med 31:431–438

    Article  CAS  PubMed  Google Scholar 

  4. Chang PY, Carrel H, Huang JS et al (2006) Decreased density of corneal basal epithelium and subbasal corneal nerve bundle changes in patients with diabetic retinopathy. Am J Ophthalmol 142:488–490

    Article  PubMed  Google Scholar 

  5. De Cilla S, Ranno S, Carini E et al (2009) Corneal subbasal nerves changes in patients with diabetic retinopathy: an in vivo confocal study. Invest Ophthalmol Vis Sci 50:5155–5158

    Article  PubMed  Google Scholar 

  6. De Clerck EE, Schouten JS, Berendschot TT et al (2015) New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review. Lancet Diabetes Endocrinol 3:653–663

    Article  PubMed  Google Scholar 

  7. Dehghani C, Pritchard N, Edwards K et al (2014) Morphometric stability of the corneal subbasal nerve plexus in healthy individuals: a 3-year longitudinal study using corneal confocal microscopy. Invest Ophthalmol Vis Sci 55:3195–3199

    Article  PubMed  Google Scholar 

  8. Dehghani C, Pritchard N, Edwards K et al (2014) Natural history of corneal nerve morphology in mild neuropathy associated with type 1 diabetes: development of a potential measure of diabetic peripheral neuropathy. Invest Ophthalmol Vis Sci 55:7982–7990

    Article  CAS  PubMed  Google Scholar 

  9. Guthoff RF, Wienss H, Hahnel C et al (2005) Epithelial innervation of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy. Cornea 24:608–613

    Article  PubMed  Google Scholar 

  10. Guthoff RF, Zhivov A, Stachs O (2009) In vivo confocal microscopy, an inner vision of the cornea – a major review. Clin Exp Ophthalmol 37:100–117

    Article  PubMed  Google Scholar 

  11. Hertz P, Bril V, Orszag A et al (2011) Reproducibility of in vivo corneal confocal microscopy as a novel screening test for early diabetic sensorimotor polyneuropathy. Diabet Med 28:1253–1260

    Article  CAS  PubMed  Google Scholar 

  12. Ishibashi F, Kojima R, Kawasaki A et al (2014) Correlation between sudomotor function, sweat gland duct size and corneal nerve fiber pathology in patients with type 2 diabetes mellitus. J Diabetes Investig 5:588–596

    Article  PubMed  Google Scholar 

  13. Ishibashi F, Okino M, Ishibashi M et al (2012) Corneal nerve fiber pathology in Japanese type 1 diabetic patients and its correlation with antecedent glycemic control and blood pressure. J Diabetes Investig 3:191–198

    Article  PubMed  Google Scholar 

  14. Leckelt J, Guimaraes P, Kott A et al (2016) Early detection of diabetic neuropathy by investigating CNFL and IENFD in thy1-YFP mice. J Endocrinol. doi:10.1530/joe-16-0284

    PubMed  Google Scholar 

  15. Lovblom LE, Halpern EM, Wu T et al (2015) In vivo corneal confocal microscopy and prediction of future-incident neuropathy in type 1 diabetes: a preliminary longitudinal analysis. Can J Diabetes 39:390–397

    Article  PubMed  Google Scholar 

  16. Mehra S, Tavakoli M, Kallinikos PA et al (2007) Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care 30:2608–2612

    Article  PubMed  Google Scholar 

  17. Midena E, Cortese M, Miotto S et al (2009) Confocal microscopy of corneal sub-basal nerve plexus: a quantitative and qualitative analysis in healthy and pathologic eyes. J Refract Surg 25:S125–S130

    PubMed  Google Scholar 

  18. Mocan MC, Durukan I, Irkec M et al (2006) Morphologic alterations of both the stromal and subbasal nerves in the corneas of patients with diabetes. Cornea 25:769–773

    Article  PubMed  Google Scholar 

  19. Nitoda E, Kallinikos P, Pallikaris A et al (2012) Correlation of diabetic retinopathy and corneal neuropathy using confocal microscopy. Curr Eye Res 37:898–906

    Article  CAS  PubMed  Google Scholar 

  20. Oliveira-Soto L, Efron N (2001) Morphology of corneal nerves using confocal microscopy. Cornea 20:374–384

    Article  CAS  PubMed  Google Scholar 

  21. Pritchard N, Edwards K, Dehghani C et al (2014) Longitudinal assessment of neuropathy in type 1 diabetes using novel ophthalmic markers (LANDMark): study design and baseline characteristics. Diabetes Res Clin Pract 104:248–256

    Article  PubMed  Google Scholar 

  22. Schram MT, Sep SJ, Van Der Kallen CJ et al (2014) The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur J Epidemiol 29:439–451

    Article  PubMed  Google Scholar 

  23. Shahidi AM, Sampson GP, Pritchard N et al (2012) Retinal nerve fibre layer thinning associated with diabetic peripheral neuropathy. Diabet Med 29:e106–e111

    Article  CAS  PubMed  Google Scholar 

  24. Sivaskandarajah GA, Halpern EM, Lovblom LE et al (2013) Structure-function relationship between corneal nerves and conventional small-fiber tests in type 1 diabetes. Diabetes Care 36:2748–2755

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stem MS, Hussain M, Lentz SI et al (2014) Differential reduction in corneal nerve fiber length in patients with type 1 or type 2 diabetes mellitus. J Diabetes Complicat 28:658–661

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tavakoli M, Mitu-Pretorian M, Petropoulos IN et al (2013) Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes 62:254–260

    Article  CAS  PubMed  Google Scholar 

  27. Tesfaye S, Vileikyte L, Rayman G et al (2011) Painful diabetic peripheral neuropathy: consensus recommendations on diagnosis, assessment and management. Diabetes Metab Res Rev 27:629–638

    Article  CAS  PubMed  Google Scholar 

  28. Vinik A, Ullal J, Parson HK et al (2006) Diabetic neuropathies: clinical manifestations and current treatment options. Nat Clin Pract Endocrinol Metab 2:269–281

    Article  CAS  PubMed  Google Scholar 

  29. Ziegler D, Papanas N, Zhivov A et al (2014) Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 63:2454–2463

    Article  PubMed  Google Scholar 

  30. Ziegler D, Strom A, Lobmann R et al (2015) High prevalence of diagnosed and undiagnosed polyneuropathy in subjects with and without diabetes participating in a nationwide educational initiative (PROTECT study). J Diabetes Complicat 29:998–1002

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Baltrusch.

Ethics declarations

Interessenkonflikt

S. Baltrusch gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von der Autorin durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltrusch, S. Konfokal mikroskopisch sichtbarer kornealer Nervenplexus als Biomarker für systemische Erkrankungen. Ophthalmologe 114, 592–600 (2017). https://doi.org/10.1007/s00347-017-0480-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-017-0480-4

Schlüsselwörter

Keywords

Navigation