Skip to main content

Advertisement

Log in

Korneale Zelltherapie – Eine Übersicht

Corneal cell therapy—an overview

  • Übersichten
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die Kultivierung und Expansion von primären kornealen Zellen verzeichnet große Fortschritte in den letzten Jahren. Die Transplantation von kultivierten limbalen Epithelzellen ist bereits eine etablierte, erfolgreiche Therapie der okulären Oberfläche. Kultivierte korneale Endothelzellen werden derzeit in einer klinischen Studie in Japan getestet. Stromale Keratozyten können in vitro expandiert werden. Auch andere Stammzellgruppen können zu kornealen Zellen differenzieren und werden in Tiermodellen auf ihre Eignung überprüft. Bis zu ihrem klinischen Einsatz müssen allerdings noch Prozesse optimiert und vereinheitlicht, die Differenzierungseffizienz gesteigert und ethische Probleme adressiert werden. In diesem Übersichtsartikel fassen wir die aktuellen Entwicklungen im Bereich der kornealen Zelltherapie zusammen.

Abstract

In recent years, the cultivation and expansion of primary corneal cells has made significant progress. The transplantation of cultured limbal epithelial cells represents a successful and established treatment of the ocular surface. Cultivated corneal endothelial cells are undergoing a clinical trial in Japan. Stromal keratocytes can now be expanded in vitro. A wide range of stem cell sources is being tested in vitro and animal models for their possible application in corneal cell therapy. This article gives an overview of recent advancements and prevailing limitations for the use of different cell sources in the therapy of corneal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

ALK:

Anteriore lamelläre Keratoplastik

AM:

Amnionmembran

CLAL:

Conjunctivolimbal allograft

CLAU:

Conjunctivolimbal autograft

CLET:

Cultivated limbal epithelium transplantation

COMET:

Kultivierte orale Mukosaepitheliumtransplantation

DPSZ:

Dentale Pulpastammzellen

ESZ:

Embryonale Stammzellen

EZM:

Extrazellulärmatrix

GMP:

Good Manufacturing Practice

IPSZ:

Induzierte pluripotente Stammzellen

KEpZ:

Korneale Epithelzellen

KEZ:

Korneale Endothelzellen

KoEpZ:

Konjunktivale Epithelzellen

KSK:

Korneale stromale Keratozyten

KSSZ:

Korneale stromale Stammzellen

LSZ:

Limbale Stammzellen

LSZI:

Limbusstammzellinsuffizienz

MSZ:

Mesenchymale Stammzellen

PK:

Penetrierende Keratoplastik

PLGA:

Polylactic-co-glycolic acid

ROCK:

Rho-associated protein kinase

SF:

Stromale Fibroblasten

SLET:

Simple limbal epithelial transplantation

SZ:

Stammzellen

TE-DSEK:

Tissue-engineered Descemet stripping endothelial keratoplasty

TGF:

Transforming growth factor

Literatur

  1. Delmonte DW, Kim T (2011) Anatomy and physiology of the cornea. J Cataract Refract Surg 37:588–598

    Article  PubMed  Google Scholar 

  2. Nakamura T, Inatomi T, Sotozono C et al (2016) Ocular surface reconstruction using stem cell and tissue engineering. Prog Retin Eye Res 51:187–207

    Article  PubMed  Google Scholar 

  3. O’callaghan AR, Daniels JT (2011) Concise review: limbal epithelial stem cell therapy: controversies and challenges. Stem Cells 29:1923–1932

    Article  PubMed  Google Scholar 

  4. Du Y, Funderburgh ML, Mann MM et al (2005) Multipotent stem cells in human corneal stroma. Stem Cells 23:1266–1275

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96:614–618

    Article  PubMed  Google Scholar 

  6. Bonanno JA (2012) Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res 95:2–7

    Article  CAS  PubMed  Google Scholar 

  7. Yu WY, Sheridan C, Grierson I et al (2011) Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J Biomed Biotechnol 2011:412743

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tan DT, Dart JK, Holland EJ et al (2012) Corneal transplantation. Lancet 379:1749–1761

    Article  PubMed  Google Scholar 

  9. De By TM (2003) Shortage in the face of plenty: improving the allocation of corneas for transplantation. Dev Ophthalmol 36:56–61

    PubMed  Google Scholar 

  10. Van Meter MD, Spears W, Sheth PH (2013) Potential adverse effects on the cornea donor pool in 2031. Int J Eye Bank 1:1–9

    Google Scholar 

  11. Reinshagen H, Boehringer D, Seitz B et al (2015) Activities of the tissue transplantation and biotechnology section of the German Ophthalmological Society: 4. Performance report 2013. Ophthalmologe 112:70–72

    Article  CAS  PubMed  Google Scholar 

  12. Soh YQ, Peh GS, Mehta JS (2016) Translational issues for human corneal endothelial tissue engineering. J Tissue Eng Regen Med. doi:10.1002/term.2131

    PubMed  Google Scholar 

  13. Fuest M, Yam GH, Peh GS et al (2016) Advances in corneal cell therapy. Regen Med 11:601–615

    Article  CAS  PubMed  Google Scholar 

  14. Niederkorn JY (2005) Corneal immune privilege. Ocul Surf 3:S158

    PubMed  Google Scholar 

  15. Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359

    Article  PubMed  PubMed Central  Google Scholar 

  16. Goldring CE, Duffy PA, Benvenisty N et al (2011) Assessing the safety of stem cell therapeutics. Cell Stem Cell 8:618–628

    Article  CAS  PubMed  Google Scholar 

  17. Hayashi R, Ishikawa Y, Ito M et al (2012) Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLOS ONE 7:e45435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  19. Rohaina CM, Then KY, Ng AM et al (2014) Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res 163:200–210

    Article  CAS  PubMed  Google Scholar 

  20. Tan X‑W, Setiawan M, Goh G et al (2014) Induction of human adipose derived stem cells into limbal epithelial cells for the reconstruction of corneal epithelium. Invest Ophthalmol Vis Sci 55:6041–6041

    Article  Google Scholar 

  21. Liu H, Zhang J, Liu CY et al (2010) Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLOS ONE 5:e10707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Liu H, Zhang J, Liu CY et al (2012) Bone marrow mesenchymal stem cells can differentiate and assume corneal keratocyte phenotype. J Cell Mol Med 16:1114–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dziasko MA, Daniels JT (2016) Anatomical features and cell-cell interactions in the human limbal epithelial stem cell niche. Ocul Surf 14:322–330

    Article  PubMed  Google Scholar 

  24. Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96:709–722 (discussion 722–703)

    Article  CAS  PubMed  Google Scholar 

  25. Miri A, Al-Deiri B, Dua HS (2010) Long-term outcomes of autolimbal and allolimbal transplants. Ophthalmology 117:1207–1213

    Article  PubMed  Google Scholar 

  26. Santos MS, Gomes JA, Hofling-Lima AL et al (2005) Survival analysis of conjunctival limbal grafts and amniotic membrane transplantation in eyes with total limbal stem cell deficiency. Am J Ophthalmol 140:223–230

    Article  PubMed  Google Scholar 

  27. Pellegrini G, Traverso CE, Franzi AT et al (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993

    Article  CAS  PubMed  Google Scholar 

  28. Basu S, Ali H, Sangwan VS (2012) Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol 153:643–650e2

    Article  PubMed  Google Scholar 

  29. Rama P, Matuska S, Paganoni G et al (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155

    Article  CAS  PubMed  Google Scholar 

  30. Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93

    Article  CAS  PubMed  Google Scholar 

  31. Sangwan VS, Basu S, Macneil S et al (2012) Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol 96:931–934

    Article  PubMed  Google Scholar 

  32. Amescua G, Atallah M, Nikpoor N et al (2014) Modified simple limbal epithelial transplantation using cryopreserved amniotic membrane for unilateral limbal stem cell deficiency. Am J Ophthalmol 158:469–475e2

    Article  CAS  PubMed  Google Scholar 

  33. Fatima A, Iftekhar G, Sangwan VS et al (2008) Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium. Eye (Lond) 22:1161–1167

    Article  CAS  Google Scholar 

  34. Ricardo JR, Cristovam PC, Filho PA et al (2013) Transplantation of conjunctival epithelial cells cultivated ex vivo in patients with total limbal stem cell deficiency. Cornea 32:221–228

    Article  PubMed  Google Scholar 

  35. Sotozono C, Inatomi T, Nakamura T et al (2013) Visual improvement after cultivated oral mucosal epithelial transplantation. Ophthalmology 120:193–200

    Article  PubMed  Google Scholar 

  36. Chen HC, Yeh LK, Tsai YJ et al (2012) Expression of angiogenesis-related factors in human corneas after cultivated oral mucosal epithelial transplantation. Invest Ophthalmol Vis Sci 53:5615–5623

    Article  CAS  PubMed  Google Scholar 

  37. Kuckelkorn R, Schrage N, Redbrake C et al (1996) Autologous transplantation of nasal mucosa after severe chemical and thermal eye burns. Acta Ophthalmol Scand 74:442–448

    Article  CAS  PubMed  Google Scholar 

  38. Pang K, Zhang K, Zhu J et al (2015) Differentiation of human embryonic stem cells to corneal epithelium and endothelium like cells for cornea replacement construction. Invest Ophthalmol Vis Sci 56:5831–5831

    Article  CAS  Google Scholar 

  39. Monteiro BG, Serafim RC, Melo GB et al (2009) Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif 42:587–594

    Article  CAS  PubMed  Google Scholar 

  40. Gomes JA, Geraldes Monteiro B, Melo GB et al (2010) Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci 51:1408–1414

    Article  PubMed  Google Scholar 

  41. Bronckaers A, Hilkens P, Fanton Y et al (2013) Angiogenic properties of human dental pulp stem cells. PLOS ONE 8:e71104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meyer-Blazejewska EA, Call MK, Yamanaka O et al (2011) From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells 29:57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cieslar-Pobuda A, Rafat M, Knoflach V et al (2016) Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget. doi:10.18632/oncotarget.9791

    Google Scholar 

  44. Mikhailova A, Ilmarinen T, Uusitalo H et al (2014) Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Reports 2:219–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hayashi R, Ishikawa Y, Sasamoto Y et al (2016) Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 531:376–380

    Article  CAS  PubMed  Google Scholar 

  46. Feng Y, Borrelli M, Reichl S et al (2014) Review of alternative carrier materials for ocular surface reconstruction. Curr Eye Res 39:541–552

    Article  CAS  PubMed  Google Scholar 

  47. Johnston MC, Noden DM, Hazelton RD et al (1979) Origins of avian ocular and periocular tissues. Exp Eye Res 29:27–43

    Article  CAS  PubMed  Google Scholar 

  48. Petroll WM, Miron-Mendoza M (2015) Mechanical interactions and crosstalk between corneal keratocytes and the extracelular matrix. Exp Eye Res 133:49–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Funderburgh JL, Mann MM, Funderburgh ML (2003) Keratocyte phenotype mediates proteoglycan structure: a role for fibroblasts in corneal fibrosis. J Biol Chem 278:45629–45637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yam GH, Yusoff NZ, Kadaba A et al (2015) Ex vivo propagation of human corneal stromal “activated keratocytes” for tissue engineering. Cell Transplant 24:1845–1861

    Article  PubMed  Google Scholar 

  51. Du Y, Sundarraj N, Funderburgh ML et al (2007) Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Invest Ophthalmol Vis Sci 48:5038–5045

    Article  PubMed  PubMed Central  Google Scholar 

  52. Du Y, Carlson EC, Funderburgh ML et al (2009) Stem cell therapy restores transparency to defective murine corneas. Stem Cells 27:1635–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chan AA, Hertsenberg AJ, Funderburgh ML et al (2013) Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype. PLOS ONE 8:e56831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ornelas LA, Bykhovskaya Y, Sareen D et al (2014) Derivation and characterization of human induced pluripotent stem cells from stromal keratocytes of patients with keratoconus. Invest Ophthalmol Vis Sci 55:4201–4201

    Google Scholar 

  55. Naylor RW, Mcghee CN, Cowan CA et al (2016) Derivation of corneal keratocyte-like cells from human induced pluripotent stem cells. PLOS ONE 11:e0165464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Mittal SK, Omoto M, Amouzegar A et al (2016) Restoration of corneal transparency by mesenchymal stem cells. Stem Cell Reports 7:583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Syed-Picard FN, Du Y, Lathrop KL et al (2015) Dental pulp stem cells: a new cellular resource for corneal stromal regeneration. Stem Cells Transl Med 4:276–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma XY, Zhang Y, Zhu D et al (2015) Corneal stroma regeneration with acellular corneal stroma sheets and keratocytes in a rabbit model. PLOS ONE 10:e0132705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wilson SL, Sidney LE, Dunphy SE et al (2015) Corneal decellularization: a method of recycling unsuitable donor tissue for clinical translation? Curr Eye Res 41:769–782. doi:10.3109/02713683.2015.1062114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Fagerholm P, Lagali NS, Merrett K et al (2010) A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med 2:46ra61

    Article  PubMed  CAS  Google Scholar 

  61. Levis HJ, Kureshi AK, Massie I et al (2015) Tissue engineering the cornea: the evolution of RAFT. J Funct Biomater 6:50–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Mcintosh AW, Salahuddin A, So S et al (2009) Collagen Vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. J Biomed Mater Res Part B Appl Biomater 90:818–831

    Article  CAS  Google Scholar 

  63. Lai JY, Li YT, Cho CH et al (2012) Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. Int J Nanomedicine 7:1101–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Van Essen TH, Van Zijl L, Possemiers T et al (2016) Biocompatibility of a fish scale-derived artificial cornea: Cytotoxicity, cellular adhesion and phenotype, and in vivo immunogenicity. Biomaterials 81:36–45

    Article  PubMed  CAS  Google Scholar 

  65. Ma X, Bao H, Cui L et al (2013) The graft of autologous adipose-derived stem cells in the corneal stroma after mechanic damage. PLOS ONE 8:e76103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yam GH, Yusoff NZ, Goh TW et al (2016) Decellularization of human stromal refractive lenticules for corneal tissue engineering. Sci Rep 6:26339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li J, Yu L, Deng Z et al (2011) Deep anterior lamellar keratoplasty using acellular corneal tissue for prevention of allograft rejection in high-risk corneas. Am J Ophthalmol 152:762–770e3

    Article  PubMed  Google Scholar 

  68. Joyce NC, Harris DL, Mello DM (2002) Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Invest Ophthalmol Vis Sci 43:2152–2159

    PubMed  Google Scholar 

  69. Bourne WM, Nelson LR, Hodge DO (1997) Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci 38:779–782

    CAS  PubMed  Google Scholar 

  70. Baum JL, Niedra R, Davis C et al (1979) Mass culture of human corneal endothelial cells. Arch Ophthalmol 97:1136–1140

    Article  CAS  PubMed  Google Scholar 

  71. Peh GS, Chng Z, Ang HP et al (2015) Propagation of human corneal endothelial cells: a novel dual media approach. Cell Transplant 24:287–304

    Article  PubMed  Google Scholar 

  72. Peh GS, Adnan K, George BL et al (2015) The effects of Rho-associated kinase inhibitor Y‑27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep 5:9167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guo Y, Liu Q, Yang Y et al (2015) The effects of ROCK inhibitor Y‑27632 on injectable spheroids of bovine corneal endothelial cells. Cell Reprogram 17:77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Okumura N, Koizumi N, Ueno M et al (2011) The new therapeutic concept of using a rho kinase inhibitor for the treatment of corneal endothelial dysfunction. Cornea 30(Suppl 1):S54–S59

    Article  PubMed  Google Scholar 

  75. Okumura N, Nakano S, Kay EP et al (2014) Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y‑27632 and Y‑39983 during corneal endothelium wound healing. Invest Ophthalmol Vis Sci 55:318–329

    Article  CAS  PubMed  Google Scholar 

  76. Peh GS, Toh KP, Wu FY et al (2011) Cultivation of human corneal endothelial cells isolated from paired donor corneas. PLOS ONE 6:e28310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhu C, Joyce NC (2004) Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci 45:1743–1751

    Article  PubMed  Google Scholar 

  78. Matthaei M, Meng H, Meeker AK et al (2012) Endothelial Cdkn1a (p21) overexpression and accelerated senescence in a mouse model of Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 53:6718–6727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Okumura N, Kay EP, Nakahara M et al (2013) Inhibition of TGF-beta signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PLOS ONE 8:e58000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Teichmann J, Valtink M, Gramm S et al (2013) Human corneal endothelial cell sheets for transplantation: thermo-responsive cell culture carriers to meet cell-specific requirements. Acta Biomater 9:5031–5039

    Article  CAS  PubMed  Google Scholar 

  81. Mimura T, Shimomura N, Usui T et al (2003) Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane. Exp Eye Res 76:745–751

    Article  CAS  PubMed  Google Scholar 

  82. Koizumi N, Sakamoto Y, Okumura N et al (2008) Cultivated corneal endothelial transplantation in a primate: possible future clinical application in corneal endothelial regenerative medicine. Cornea 27(Suppl 1):S48–S55

    Article  PubMed  Google Scholar 

  83. Bostan C, Theriault M, Forget KJ et al (2016) In vivo functionality of a corneal endothelium transplanted by cell-injection therapy in a feline model. Invest Ophthalmol Vis Sci 57:1620–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bayyoud T, Thaler S, Hofmann J et al (2012) Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Curr Eye Res 37:179–186

    Article  CAS  PubMed  Google Scholar 

  85. Yoshida J, Oshikata-Miyazaki A, Yokoo S et al (2014) Development and evaluation of porcine atelocollagen vitrigel membrane with a spherical curve and transplantable artificial corneal endothelial grafts. Invest Ophthalmol Vis Sci 55:4975–4981

    Article  PubMed  Google Scholar 

  86. Fan T, Ma X, Zhao J et al (2013) Transplantation of tissue-engineered human corneal endothelium in cat models. Mol Vis 19:400–407

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yoeruek E, Bayyoud T, Maurus C et al (2012) Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts. Acta Ophthalmol 90:e125–e131

    Article  PubMed  Google Scholar 

  88. Ozcelik B, Brown KD, Blencowe A et al (2014) Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium. Adv Healthc Mater 3:1496–1507

    Article  CAS  PubMed  Google Scholar 

  89. Young TH, Wang IJ, Hu FR et al (2014) Fabrication of a bioengineered corneal endothelial cell sheet using chitosan/polycaprolactone blend membranes. Colloids Surf B Biointerfaces 116:403–410

    Article  CAS  PubMed  Google Scholar 

  90. Kimoto M, Shima N, Yamaguchi M et al (2014) Development of a bioengineered corneal endothelial cell sheet to fit the corneal curvature. Invest Ophthalmol Vis Sci 55:2337–2343

    Article  CAS  PubMed  Google Scholar 

  91. Salehi S, Grunert AK, Bahners T et al (2014) New nanofibrous scaffold for corneal tissue engineering. Klin Monbl Augenheilkd 231:626–630

    Article  CAS  PubMed  Google Scholar 

  92. Palchesko RN, Lathrop KL, Funderburgh JL et al (2015) In vitro expansion of corneal endothelial cells on biomimetic substrates. Sci Rep 5:7955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Muhammad R, Peh GS, Adnan K et al (2015) Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells. Acta Biomater 19:138–148

    Article  CAS  PubMed  Google Scholar 

  94. Gao X, Liu W, Han B et al (2008) Preparation and properties of a chitosan-based carrier of corneal endothelial cells. J Mater Sci Mater Med 19:3611–3619

    Article  CAS  PubMed  Google Scholar 

  95. Raviola G (1982) Schwalbe line’s cells: a new cell type in the trabecular meshwork of Macaca mulatta. Invest Ophthalmol Vis Sci 22:45–56

    CAS  PubMed  Google Scholar 

  96. Hirata-Tominaga K, Nakamura T, Okumura N et al (2013) Corneal endothelial cell fate is maintained by LGR5 through the regulation of hedgehog and Wnt pathway. Stem Cells 31:1396–1407

    Article  CAS  PubMed  Google Scholar 

  97. Dirisamer M, Yeh RY, Van Dijk K et al (2012) Recipient endothelium may relate to corneal clearance in descemet membrane endothelial transfer. Am J Ophthalmol 154:290–296e1

    Article  PubMed  Google Scholar 

  98. Bleyen I, Saelens IE, Van Dooren BT et al (2013) Spontaneous corneal clearing after Descemet’s stripping. Ophthalmology 120:215

    Article  PubMed  Google Scholar 

  99. Koizumi N, Okumura N, Ueno M et al (2014) New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops. Cornea 33(Suppl 11):S25–S31

    Article  PubMed  Google Scholar 

  100. Zhang K, Pang K, Wu X (2014) Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev 23:1340–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lo B, Parham L (2009) Ethical issues in stem cell research. Endocr Rev 30:204–213

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wu J, Izpisua Belmonte JC (2015) Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17:509–525

    Article  CAS  PubMed  Google Scholar 

  103. Hatou S, Yoshida S, Higa K et al (2013) Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/beta-catenin signaling. Stem Cells Dev 22:828–839

    Article  CAS  PubMed  Google Scholar 

  104. Inagaki E, Hatou S, Higa K et al (2015) Functional analysis of tissue engineered corneal endothelium from human skin derived precursors. Invest Ophthalmol Vis Sci 56:3450–3450

    Google Scholar 

  105. Hatou S, Yoshida S, Higa K et al (2013) Corneal endothelial cells derived from monkey iPS cells: a short term evaluation. Invest Ophthalmol Vis Sci 54:1015–1015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fuest.

Ethics declarations

Interessenkonflikt

M. Fuest, G. Hin-Fai Yam, G. Swee-Lim Peh, P. Walter, N. Plange und J.S. Mehta geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuest, M., Yam, G.HF., Peh, G.SL. et al. Korneale Zelltherapie – Eine Übersicht. Ophthalmologe 114, 705–715 (2017). https://doi.org/10.1007/s00347-017-0454-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-017-0454-6

Schlüsselwörter

Keywords

Navigation