Zusammenfassung
Die Kultivierung und Expansion von primären kornealen Zellen verzeichnet große Fortschritte in den letzten Jahren. Die Transplantation von kultivierten limbalen Epithelzellen ist bereits eine etablierte, erfolgreiche Therapie der okulären Oberfläche. Kultivierte korneale Endothelzellen werden derzeit in einer klinischen Studie in Japan getestet. Stromale Keratozyten können in vitro expandiert werden. Auch andere Stammzellgruppen können zu kornealen Zellen differenzieren und werden in Tiermodellen auf ihre Eignung überprüft. Bis zu ihrem klinischen Einsatz müssen allerdings noch Prozesse optimiert und vereinheitlicht, die Differenzierungseffizienz gesteigert und ethische Probleme adressiert werden. In diesem Übersichtsartikel fassen wir die aktuellen Entwicklungen im Bereich der kornealen Zelltherapie zusammen.
Abstract
In recent years, the cultivation and expansion of primary corneal cells has made significant progress. The transplantation of cultured limbal epithelial cells represents a successful and established treatment of the ocular surface. Cultivated corneal endothelial cells are undergoing a clinical trial in Japan. Stromal keratocytes can now be expanded in vitro. A wide range of stem cell sources is being tested in vitro and animal models for their possible application in corneal cell therapy. This article gives an overview of recent advancements and prevailing limitations for the use of different cell sources in the therapy of corneal disease.
Abbreviations
- ALK:
-
Anteriore lamelläre Keratoplastik
- AM:
-
Amnionmembran
- CLAL:
-
Conjunctivolimbal allograft
- CLAU:
-
Conjunctivolimbal autograft
- CLET:
-
Cultivated limbal epithelium transplantation
- COMET:
-
Kultivierte orale Mukosaepitheliumtransplantation
- DPSZ:
-
Dentale Pulpastammzellen
- ESZ:
-
Embryonale Stammzellen
- EZM:
-
Extrazellulärmatrix
- GMP:
-
Good Manufacturing Practice
- IPSZ:
-
Induzierte pluripotente Stammzellen
- KEpZ:
-
Korneale Epithelzellen
- KEZ:
-
Korneale Endothelzellen
- KoEpZ:
-
Konjunktivale Epithelzellen
- KSK:
-
Korneale stromale Keratozyten
- KSSZ:
-
Korneale stromale Stammzellen
- LSZ:
-
Limbale Stammzellen
- LSZI:
-
Limbusstammzellinsuffizienz
- MSZ:
-
Mesenchymale Stammzellen
- PK:
-
Penetrierende Keratoplastik
- PLGA:
-
Polylactic-co-glycolic acid
- ROCK:
-
Rho-associated protein kinase
- SF:
-
Stromale Fibroblasten
- SLET:
-
Simple limbal epithelial transplantation
- SZ:
-
Stammzellen
- TE-DSEK:
-
Tissue-engineered Descemet stripping endothelial keratoplasty
- TGF:
-
Transforming growth factor
Literatur
Delmonte DW, Kim T (2011) Anatomy and physiology of the cornea. J Cataract Refract Surg 37:588–598
Nakamura T, Inatomi T, Sotozono C et al (2016) Ocular surface reconstruction using stem cell and tissue engineering. Prog Retin Eye Res 51:187–207
O’callaghan AR, Daniels JT (2011) Concise review: limbal epithelial stem cell therapy: controversies and challenges. Stem Cells 29:1923–1932
Du Y, Funderburgh ML, Mann MM et al (2005) Multipotent stem cells in human corneal stroma. Stem Cells 23:1266–1275
Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96:614–618
Bonanno JA (2012) Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res 95:2–7
Yu WY, Sheridan C, Grierson I et al (2011) Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J Biomed Biotechnol 2011:412743
Tan DT, Dart JK, Holland EJ et al (2012) Corneal transplantation. Lancet 379:1749–1761
De By TM (2003) Shortage in the face of plenty: improving the allocation of corneas for transplantation. Dev Ophthalmol 36:56–61
Van Meter MD, Spears W, Sheth PH (2013) Potential adverse effects on the cornea donor pool in 2031. Int J Eye Bank 1:1–9
Reinshagen H, Boehringer D, Seitz B et al (2015) Activities of the tissue transplantation and biotechnology section of the German Ophthalmological Society: 4. Performance report 2013. Ophthalmologe 112:70–72
Soh YQ, Peh GS, Mehta JS (2016) Translational issues for human corneal endothelial tissue engineering. J Tissue Eng Regen Med. doi:10.1002/term.2131
Fuest M, Yam GH, Peh GS et al (2016) Advances in corneal cell therapy. Regen Med 11:601–615
Niederkorn JY (2005) Corneal immune privilege. Ocul Surf 3:S158
Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359
Goldring CE, Duffy PA, Benvenisty N et al (2011) Assessing the safety of stem cell therapeutics. Cell Stem Cell 8:618–628
Hayashi R, Ishikawa Y, Ito M et al (2012) Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLOS ONE 7:e45435
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676
Rohaina CM, Then KY, Ng AM et al (2014) Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res 163:200–210
Tan X‑W, Setiawan M, Goh G et al (2014) Induction of human adipose derived stem cells into limbal epithelial cells for the reconstruction of corneal epithelium. Invest Ophthalmol Vis Sci 55:6041–6041
Liu H, Zhang J, Liu CY et al (2010) Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLOS ONE 5:e10707
Liu H, Zhang J, Liu CY et al (2012) Bone marrow mesenchymal stem cells can differentiate and assume corneal keratocyte phenotype. J Cell Mol Med 16:1114–1124
Dziasko MA, Daniels JT (2016) Anatomical features and cell-cell interactions in the human limbal epithelial stem cell niche. Ocul Surf 14:322–330
Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96:709–722 (discussion 722–703)
Miri A, Al-Deiri B, Dua HS (2010) Long-term outcomes of autolimbal and allolimbal transplants. Ophthalmology 117:1207–1213
Santos MS, Gomes JA, Hofling-Lima AL et al (2005) Survival analysis of conjunctival limbal grafts and amniotic membrane transplantation in eyes with total limbal stem cell deficiency. Am J Ophthalmol 140:223–230
Pellegrini G, Traverso CE, Franzi AT et al (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993
Basu S, Ali H, Sangwan VS (2012) Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol 153:643–650e2
Rama P, Matuska S, Paganoni G et al (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155
Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93
Sangwan VS, Basu S, Macneil S et al (2012) Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol 96:931–934
Amescua G, Atallah M, Nikpoor N et al (2014) Modified simple limbal epithelial transplantation using cryopreserved amniotic membrane for unilateral limbal stem cell deficiency. Am J Ophthalmol 158:469–475e2
Fatima A, Iftekhar G, Sangwan VS et al (2008) Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium. Eye (Lond) 22:1161–1167
Ricardo JR, Cristovam PC, Filho PA et al (2013) Transplantation of conjunctival epithelial cells cultivated ex vivo in patients with total limbal stem cell deficiency. Cornea 32:221–228
Sotozono C, Inatomi T, Nakamura T et al (2013) Visual improvement after cultivated oral mucosal epithelial transplantation. Ophthalmology 120:193–200
Chen HC, Yeh LK, Tsai YJ et al (2012) Expression of angiogenesis-related factors in human corneas after cultivated oral mucosal epithelial transplantation. Invest Ophthalmol Vis Sci 53:5615–5623
Kuckelkorn R, Schrage N, Redbrake C et al (1996) Autologous transplantation of nasal mucosa after severe chemical and thermal eye burns. Acta Ophthalmol Scand 74:442–448
Pang K, Zhang K, Zhu J et al (2015) Differentiation of human embryonic stem cells to corneal epithelium and endothelium like cells for cornea replacement construction. Invest Ophthalmol Vis Sci 56:5831–5831
Monteiro BG, Serafim RC, Melo GB et al (2009) Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif 42:587–594
Gomes JA, Geraldes Monteiro B, Melo GB et al (2010) Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci 51:1408–1414
Bronckaers A, Hilkens P, Fanton Y et al (2013) Angiogenic properties of human dental pulp stem cells. PLOS ONE 8:e71104
Meyer-Blazejewska EA, Call MK, Yamanaka O et al (2011) From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells 29:57–66
Cieslar-Pobuda A, Rafat M, Knoflach V et al (2016) Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget. doi:10.18632/oncotarget.9791
Mikhailova A, Ilmarinen T, Uusitalo H et al (2014) Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Reports 2:219–231
Hayashi R, Ishikawa Y, Sasamoto Y et al (2016) Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 531:376–380
Feng Y, Borrelli M, Reichl S et al (2014) Review of alternative carrier materials for ocular surface reconstruction. Curr Eye Res 39:541–552
Johnston MC, Noden DM, Hazelton RD et al (1979) Origins of avian ocular and periocular tissues. Exp Eye Res 29:27–43
Petroll WM, Miron-Mendoza M (2015) Mechanical interactions and crosstalk between corneal keratocytes and the extracelular matrix. Exp Eye Res 133:49–57
Funderburgh JL, Mann MM, Funderburgh ML (2003) Keratocyte phenotype mediates proteoglycan structure: a role for fibroblasts in corneal fibrosis. J Biol Chem 278:45629–45637
Yam GH, Yusoff NZ, Kadaba A et al (2015) Ex vivo propagation of human corneal stromal “activated keratocytes” for tissue engineering. Cell Transplant 24:1845–1861
Du Y, Sundarraj N, Funderburgh ML et al (2007) Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Invest Ophthalmol Vis Sci 48:5038–5045
Du Y, Carlson EC, Funderburgh ML et al (2009) Stem cell therapy restores transparency to defective murine corneas. Stem Cells 27:1635–1642
Chan AA, Hertsenberg AJ, Funderburgh ML et al (2013) Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype. PLOS ONE 8:e56831
Ornelas LA, Bykhovskaya Y, Sareen D et al (2014) Derivation and characterization of human induced pluripotent stem cells from stromal keratocytes of patients with keratoconus. Invest Ophthalmol Vis Sci 55:4201–4201
Naylor RW, Mcghee CN, Cowan CA et al (2016) Derivation of corneal keratocyte-like cells from human induced pluripotent stem cells. PLOS ONE 11:e0165464
Mittal SK, Omoto M, Amouzegar A et al (2016) Restoration of corneal transparency by mesenchymal stem cells. Stem Cell Reports 7:583–590
Syed-Picard FN, Du Y, Lathrop KL et al (2015) Dental pulp stem cells: a new cellular resource for corneal stromal regeneration. Stem Cells Transl Med 4:276–285
Ma XY, Zhang Y, Zhu D et al (2015) Corneal stroma regeneration with acellular corneal stroma sheets and keratocytes in a rabbit model. PLOS ONE 10:e0132705
Wilson SL, Sidney LE, Dunphy SE et al (2015) Corneal decellularization: a method of recycling unsuitable donor tissue for clinical translation? Curr Eye Res 41:769–782. doi:10.3109/02713683.2015.1062114
Fagerholm P, Lagali NS, Merrett K et al (2010) A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med 2:46ra61
Levis HJ, Kureshi AK, Massie I et al (2015) Tissue engineering the cornea: the evolution of RAFT. J Funct Biomater 6:50–65
Mcintosh AW, Salahuddin A, So S et al (2009) Collagen Vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. J Biomed Mater Res Part B Appl Biomater 90:818–831
Lai JY, Li YT, Cho CH et al (2012) Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. Int J Nanomedicine 7:1101–1114
Van Essen TH, Van Zijl L, Possemiers T et al (2016) Biocompatibility of a fish scale-derived artificial cornea: Cytotoxicity, cellular adhesion and phenotype, and in vivo immunogenicity. Biomaterials 81:36–45
Ma X, Bao H, Cui L et al (2013) The graft of autologous adipose-derived stem cells in the corneal stroma after mechanic damage. PLOS ONE 8:e76103
Yam GH, Yusoff NZ, Goh TW et al (2016) Decellularization of human stromal refractive lenticules for corneal tissue engineering. Sci Rep 6:26339
Li J, Yu L, Deng Z et al (2011) Deep anterior lamellar keratoplasty using acellular corneal tissue for prevention of allograft rejection in high-risk corneas. Am J Ophthalmol 152:762–770e3
Joyce NC, Harris DL, Mello DM (2002) Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Invest Ophthalmol Vis Sci 43:2152–2159
Bourne WM, Nelson LR, Hodge DO (1997) Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci 38:779–782
Baum JL, Niedra R, Davis C et al (1979) Mass culture of human corneal endothelial cells. Arch Ophthalmol 97:1136–1140
Peh GS, Chng Z, Ang HP et al (2015) Propagation of human corneal endothelial cells: a novel dual media approach. Cell Transplant 24:287–304
Peh GS, Adnan K, George BL et al (2015) The effects of Rho-associated kinase inhibitor Y‑27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep 5:9167
Guo Y, Liu Q, Yang Y et al (2015) The effects of ROCK inhibitor Y‑27632 on injectable spheroids of bovine corneal endothelial cells. Cell Reprogram 17:77–87
Okumura N, Koizumi N, Ueno M et al (2011) The new therapeutic concept of using a rho kinase inhibitor for the treatment of corneal endothelial dysfunction. Cornea 30(Suppl 1):S54–S59
Okumura N, Nakano S, Kay EP et al (2014) Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y‑27632 and Y‑39983 during corneal endothelium wound healing. Invest Ophthalmol Vis Sci 55:318–329
Peh GS, Toh KP, Wu FY et al (2011) Cultivation of human corneal endothelial cells isolated from paired donor corneas. PLOS ONE 6:e28310
Zhu C, Joyce NC (2004) Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci 45:1743–1751
Matthaei M, Meng H, Meeker AK et al (2012) Endothelial Cdkn1a (p21) overexpression and accelerated senescence in a mouse model of Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 53:6718–6727
Okumura N, Kay EP, Nakahara M et al (2013) Inhibition of TGF-beta signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PLOS ONE 8:e58000
Teichmann J, Valtink M, Gramm S et al (2013) Human corneal endothelial cell sheets for transplantation: thermo-responsive cell culture carriers to meet cell-specific requirements. Acta Biomater 9:5031–5039
Mimura T, Shimomura N, Usui T et al (2003) Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane. Exp Eye Res 76:745–751
Koizumi N, Sakamoto Y, Okumura N et al (2008) Cultivated corneal endothelial transplantation in a primate: possible future clinical application in corneal endothelial regenerative medicine. Cornea 27(Suppl 1):S48–S55
Bostan C, Theriault M, Forget KJ et al (2016) In vivo functionality of a corneal endothelium transplanted by cell-injection therapy in a feline model. Invest Ophthalmol Vis Sci 57:1620–1634
Bayyoud T, Thaler S, Hofmann J et al (2012) Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Curr Eye Res 37:179–186
Yoshida J, Oshikata-Miyazaki A, Yokoo S et al (2014) Development and evaluation of porcine atelocollagen vitrigel membrane with a spherical curve and transplantable artificial corneal endothelial grafts. Invest Ophthalmol Vis Sci 55:4975–4981
Fan T, Ma X, Zhao J et al (2013) Transplantation of tissue-engineered human corneal endothelium in cat models. Mol Vis 19:400–407
Yoeruek E, Bayyoud T, Maurus C et al (2012) Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts. Acta Ophthalmol 90:e125–e131
Ozcelik B, Brown KD, Blencowe A et al (2014) Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium. Adv Healthc Mater 3:1496–1507
Young TH, Wang IJ, Hu FR et al (2014) Fabrication of a bioengineered corneal endothelial cell sheet using chitosan/polycaprolactone blend membranes. Colloids Surf B Biointerfaces 116:403–410
Kimoto M, Shima N, Yamaguchi M et al (2014) Development of a bioengineered corneal endothelial cell sheet to fit the corneal curvature. Invest Ophthalmol Vis Sci 55:2337–2343
Salehi S, Grunert AK, Bahners T et al (2014) New nanofibrous scaffold for corneal tissue engineering. Klin Monbl Augenheilkd 231:626–630
Palchesko RN, Lathrop KL, Funderburgh JL et al (2015) In vitro expansion of corneal endothelial cells on biomimetic substrates. Sci Rep 5:7955
Muhammad R, Peh GS, Adnan K et al (2015) Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells. Acta Biomater 19:138–148
Gao X, Liu W, Han B et al (2008) Preparation and properties of a chitosan-based carrier of corneal endothelial cells. J Mater Sci Mater Med 19:3611–3619
Raviola G (1982) Schwalbe line’s cells: a new cell type in the trabecular meshwork of Macaca mulatta. Invest Ophthalmol Vis Sci 22:45–56
Hirata-Tominaga K, Nakamura T, Okumura N et al (2013) Corneal endothelial cell fate is maintained by LGR5 through the regulation of hedgehog and Wnt pathway. Stem Cells 31:1396–1407
Dirisamer M, Yeh RY, Van Dijk K et al (2012) Recipient endothelium may relate to corneal clearance in descemet membrane endothelial transfer. Am J Ophthalmol 154:290–296e1
Bleyen I, Saelens IE, Van Dooren BT et al (2013) Spontaneous corneal clearing after Descemet’s stripping. Ophthalmology 120:215
Koizumi N, Okumura N, Ueno M et al (2014) New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops. Cornea 33(Suppl 11):S25–S31
Zhang K, Pang K, Wu X (2014) Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev 23:1340–1354
Lo B, Parham L (2009) Ethical issues in stem cell research. Endocr Rev 30:204–213
Wu J, Izpisua Belmonte JC (2015) Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17:509–525
Hatou S, Yoshida S, Higa K et al (2013) Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/beta-catenin signaling. Stem Cells Dev 22:828–839
Inagaki E, Hatou S, Higa K et al (2015) Functional analysis of tissue engineered corneal endothelium from human skin derived precursors. Invest Ophthalmol Vis Sci 56:3450–3450
Hatou S, Yoshida S, Higa K et al (2013) Corneal endothelial cells derived from monkey iPS cells: a short term evaluation. Invest Ophthalmol Vis Sci 54:1015–1015
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Interessenkonflikt
M. Fuest, G. Hin-Fai Yam, G. Swee-Lim Peh, P. Walter, N. Plange und J.S. Mehta geben an, dass kein Interessenkonflikt besteht.
Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.
Rights and permissions
About this article
Cite this article
Fuest, M., Yam, G.HF., Peh, G.SL. et al. Korneale Zelltherapie – Eine Übersicht. Ophthalmologe 114, 705–715 (2017). https://doi.org/10.1007/s00347-017-0454-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00347-017-0454-6