Skip to main content
Log in

Rolle des alternden visuellen Systems bei Glaukomen

Role of the aging visual system in glaucoma

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Grundlagen

Die Glaukome sind weltweit die zweithäufigste Ursache für eine Erblindung und werden in den meisten Fällen erst in einem vorangeschrittenen Alter diagnostiziert. Wie das Patientenalter die Entwicklung eines Glaukoms beeinflusst, sollte untersucht werden.

Material und Methoden

Zu den Themen Alterungsprozesse des visuellen Systems und Glaukom wurde eine webbasierte Recherche durchgeführt, deren wichtigste Ergebnisse in Form des vorliegenden Beitrags zusammengefasst werden sollen.

Ergebnisse

Die Prävalenz für ein Glaukom steigt mit zunehmendem Lebensalter an. Alterungsprozesse auf Ebene des Trabekelmaschenwerks und des uveoskleralen Abflusswegs führen zu einem Ansteigen des intraokularen Druckes. Ein chronisch erhöhter Augendruck führt zu Umbauprozessen an der Lamina cribrosa, die eine Einengung der das Auge verlassenden Ganglienzellaxone bewirkt. Altersbedingte Funktionsstörungen von Gliazellen, Mitochondrien und Immunsystem werden ebenfalls im Kontext der Glaukome diskutiert. Das Patientenalter und weitere altersbedingte nichtophthalmologische Systemerkrankungen beeinflussen die Therapieadhärenz und -persistenz.

Diskussion

Das Alter ist ein wichtiger Risikofaktor für die Entwicklung eines Glaukoms und ein wichtiger Faktor, der Therapie und Verlauf der Erkrankung beeinflusst. Unklar bleibt weiterhin, welche zusätzlichen Faktoren zu welchen Anteilen notwendig dafür sind, tatsächlich ein Glaukom zu entwickeln.

Abstract

Background

Glaucoma is the second leading cause of blindness worldwide and is usually diagnosed in higher age groups. The goal was to survey how patient age influences the development of glaucoma.

Materials and methods

A web-based search on aging of the visual system and its influence on glaucoma was performed and the most important results are summarized.

Results

The prevalence of glaucoma rises with age. Aging processes of the trabecular meshwork and the uveoscleral outflow pathway lead to a rise in the intraocular pressure. Chronically elevated intraocular pressure leads to remodelling of the lamina cribrosa and narrowing of its pores through which ganglion cell axons leave the eye. Age-dependent glia cell, mitochondria and immune system alterations are discussed to influence glaucoma. Patient age and further age-related nonophthalmological systemic diseases also influence adherence and persistence to the prescribed therapy.

Conclusions

Aging is an important risk factor for developing glaucoma and is a main factor which influences therapy and course of the disease. At this point in time it remains unclear to which extent additional factors determine the development of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Bartke A, Chandrashekar V, Dominici F et al (2003) Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights. Biogerontology 4:1–8

    Article  CAS  PubMed  Google Scholar 

  2. Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bringmann A, Pannicke T, Grosche J et al (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424

    Article  CAS  PubMed  Google Scholar 

  4. Burgoyne CF, Downs JC, Bellezza AJ et al (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24:39–73

    Article  PubMed  Google Scholar 

  5. Doozandeh A, Yazdani S (2016) Neuroprotection in glaucoma. J Ophthalmic Vis Res 11:209–220

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gabelt BT, Kaufman PL (2005) Changes in aqueous humor dynamics with age and glaucoma. Prog Retin Eye Res 24:612–637

    Article  CAS  PubMed  Google Scholar 

  7. Grytz R, Sigal IA, Ruberti JW et al (2012) Lamina cribrosa thickening in early glaucoma predicted by a microstructure motivated growth and remodeling approach. Mech Mater 44:99–109

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hauk TG, Muller A, Lee J et al (2008) Neuroprotective and axon growth promoting effects of intraocular inflammation do not depend on oncomodulin or the presence of large numbers of activated macrophages. Exp Neurol 209:469–482

    Article  CAS  PubMed  Google Scholar 

  9. Heijl A, Leske MC, Bengtsson B et al (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120:1268–1279

    Article  PubMed  Google Scholar 

  10. Hernandez MR (2000) The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 19:297–321

    Article  CAS  PubMed  Google Scholar 

  11. Joachim SC, Reinehr S, Kuehn S et al (2013) Immune response against ocular tissues after immunization with optic nerve antigens in a model of autoimmune glaucoma. Mol Vis 19:1804–1814

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kong GY, Van Bergen NJ, Trounce IA et al (2009) Mitochondrial dysfunction and glaucoma. J Glaucoma 18:93–100

    Article  PubMed  Google Scholar 

  13. Newman-Casey PA, Robin AL, Blachley T et al (2015) The most common barriers to glaucoma medication adherence: a cross-sectional survey. Ophthalmology 122:1308–1316

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nordstrom BL, Friedman DS, Mozaffari E et al (2005) Persistence and adherence with topical glaucoma therapy. Am J Ophthalmol 140:598–606

    Article  PubMed  Google Scholar 

  15. Osborne NN (2009) Recent clinical findings with memantine should not mean that the idea of neuroprotection in glaucoma is abandoned. Acta Ophthalmol 87:450–454

    Article  PubMed  Google Scholar 

  16. Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96:614–618

    Article  PubMed  Google Scholar 

  17. Procaccini C, Santopaolo M, Faicchia D et al (2016) Role of metabolism in neurodegenerative disorders. Metabolism 65:1376–1390

    Article  CAS  PubMed  Google Scholar 

  18. Quigley HA (1996) Number of people with glaucoma worldwide. Br J Ophthalmol 80:389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quigley HA, Mckinnon SJ, Zack DJ et al (2000) Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci 41:3460–3466

    CAS  PubMed  Google Scholar 

  20. Sivak JM (2013) The aging eye: common degenerative mechanisms between the Alzheimer’s brain and retinal disease. Invest Ophthalmol Vis Sci 54:871–880

    Article  PubMed  Google Scholar 

  21. Spilman P, Podlutskaya N, Hart MJ et al (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLOS ONE 5:e9979

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tektas OY, Lutjen-Drecoll E (2009) Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp Eye Res 88:769–775

    Article  CAS  PubMed  Google Scholar 

  23. Tezel G (2009) The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci 50:1001–1012

    Article  PubMed  Google Scholar 

  24. Tezel G, Wax MB (2007) Glaucoma. Chem Immunol Allergy 92:221–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tham YC, Li X, Wong TY et al (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090

    Article  PubMed  Google Scholar 

  26. Theinert C, Wiedemann P, Unterlauft JD (2016) Laser peripheral iridotomy changes anterior chamber architecture. Eur J Ophthalmol. doi:10.5301/ejo.5000804

    PubMed  Google Scholar 

  27. Wang N, Xie X, Yang D et al (2012) Orbital cerebrospinal fluid space in glaucoma: the Beijing intracranial and intraocular pressure (iCOP) study. Ophthalmology 119:2065–2073.e1

    Article  PubMed  Google Scholar 

  28. Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901–1911

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28:348–368

    Article  PubMed  Google Scholar 

  30. Yu-Wai-Man P, Griffiths PG, Hudson G et al (2009) Inherited mitochondrial optic neuropathies. J Med Genet 46:145–158

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Unterlauft.

Ethics declarations

Interessenkonflikt

J.D. Unterlauft und M.R.R. Böhm geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unterlauft, J.D., Böhm, M.R.R. Rolle des alternden visuellen Systems bei Glaukomen. Ophthalmologe 114, 108–113 (2017). https://doi.org/10.1007/s00347-016-0430-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-016-0430-6

Schlüsselwörter

Keywords

Navigation