Skip to main content
Log in

Histologie im lebenden Auge

Nichtinvasive mikroskopische Struktur- und Funktionsanalyse der Netzhaut mit adaptiven Optiken

Histology of the living eye

Noninvasive microscopic structure and functional analysis of the retina with adaptive optics

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Adaptive Optiken (AO) ermöglichen im lebenden Auge eine Untersuchung der Netzhaut auf zellulärer Ebene. Mittels AO können die Nervenfaserschicht, kleinste Blutgefäße der inneren Netzhaut, Photorezeptorzellen (Zapfen und Stäbchen) und das Mosaik des retinalen Pigmentepithels in gesunder und erkrankter Netzhaut direkt beobachtet werden. Eine Vielzahl wissenschaftlicher Untersuchungen bei verschiedenen Erkrankungen der Netzhaut zeigt schon jetzt, dass diese neugewonnenen strukturellen Details Krankheitsverläufe präziser beschreiben und in einigen Fällen eine Früherkennung ermöglichen können. Die Koppelung mit hochaufgelöster AO-Stimulation zeigt, dass auch visuelle Funktion auf zellulärer Ebene untersuchbar ist. Daraus ergeben sich völlig neue Wege für die klinische und interventionelle Ophthalmologie, und für die grundlagenwissenschaftliche Untersuchung des Sehens und der zugrunde liegenden neuronalen Strukturen.

Abstract

Equipping an ophthalmoscope with adaptive optics (AO) offers access to the living human retina with unprecedented spatial resolution. With AO, cellular structures such as the nerve fiber layer, the microvasculature of the smallest retinal capillaries, rod and cone photoreceptors and the mosaic of the retinal pigment epithelium are directly observable. A large number of studies in the normal and diseased retina have already shown that this level of detail offers new insights into disease mechanisms and progression, and promises to identify early disease markers. In conjunction with functional testing of single photoreceptors that is possible with AO microstimulation, a structure–function relationship on the cellular scale is within reach. These technological advances offer new avenues for clinical ophthalmology, interventional efforts, and basic research of the function and dysfunction of vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Bruce KS, Harmening WM, Langston BR et al (2015) Normal perceptual sensitivity arising from weakly reflective cone photoreceptors. Invest Ophthalmol Vis Sci 56:4431–4438

    Article  PubMed  PubMed Central  Google Scholar 

  2. Burns SA, Elsner AE, Chui TY et al (2014) In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed Opt Express 5:961–974

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen MF, Chui TYP, Alhadeff P et al (2015) Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma. Invest Ophthalmol Vis Sci 56:674–681

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chui TYP, Gast TJ, Burns SA (2013) Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 54:7115–7124

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chui TYP, Mo S, Krawitz B et al (2016) Human retinal microvascular imaging using adaptive optics scanning light ophthalmoscopy. Int J Retin Vitr 2:11

    Article  Google Scholar 

  6. Chui TYP, Pinhas A, Gan A et al (2016) Longitudinal imaging of microvascular remodelling in proliferative diabetic retinopathy using adaptive optics scanning light ophthalmoscopy. Ophthalmic Physiol Opt 36:290–302

    Article  PubMed  Google Scholar 

  7. Chui TYP, Vannasdale DA, Burns SA (2012) The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope. Biomed Opt Express 3:2537–2549

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cooper RF, Wilk MA, Tarima S, Carroll J (2016) Evaluating descriptive metrics of the human cone mosaic. Invest Ophthalmol Vis Sci 57:2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Doble N, Choi SS, Codona JL et al (2011) In vivo imaging of the human rod photoreceptor mosaic. Opt Lett 36:31–33

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dubow M, Pinhas A, Shah N et al (2014) Classification of human retinal microaneurysms using adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci 55:1299–1309

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dubra A, Sulai Y, Norris JL et al (2011) Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed Opt Express 2:1864–1876

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eizenman M, Hallet PE, Frecker RC (1985) Power spectra for ocular drift and tremor. Vision Res 25:1635–1640

    Article  CAS  PubMed  Google Scholar 

  13. Hammer DX, Ferguson RD, Bigelow CE et al (2006) Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging. Opt Express 14:3354–3367

    Article  PubMed  PubMed Central  Google Scholar 

  14. Harmening WM, Tiruveedhula P, Roorda A, Sincich LC (2012) Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye. Biomed Opt Express 3:2066–2077

    Article  PubMed  PubMed Central  Google Scholar 

  15. Harmening WM, Tuten WS, Roorda A, Sincich LC (2014) Mapping the perceptual grain of the human retina. J Neurosci 34:5667–5677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hofer H, Singer B, Williams DR (2005) Different sensations from cones with the same photopigment. J Vis 5:444–454

    Article  PubMed  Google Scholar 

  17. Hood DC, Chen MF, Lee D et al (2015) Confocal adaptive optics imaging of peripapillary nerve fiber bundles: implications for glaucomatous damage seen on circumpapillary OCT scans. Transl Vis Sci Technol 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  18. Horton JC, Parker AB, Botelho JV, Duncan JL (2015) Spontaneous regeneration of human photoreceptor outer segments. Sci. Rep. 5:12364

  19. Jian Y, Lee S, Ju MJ et al (2016) Lens-based wavefront sensorless adaptive optics swept source OCT. Sci Rep 6:27620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jonnal RS, Besecker JR, Derby JC et al (2010) Imaging outer segment renewal in living human cone photoreceptors. Opt Express 18:5257–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kocaoglu OP, Turner TL, Liu Z, Miller DT (2014) Adaptive optics optical coherence tomography at 1 MHz. Biomed Opt Express 5:4186–4200

    Article  PubMed  PubMed Central  Google Scholar 

  22. Koch E, Rosenbaum D, Brolly A et al (2014) Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens 32:890–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liang J, Williams DR, Miller DT (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis 14:2884–2892

    Article  CAS  PubMed  Google Scholar 

  24. Liu Z, Kocaoglu OP, Miller DT (2016) 3D imaging of retinal pigment epithelial cells in the living human retina. Invest Ophthalmol Vis Sci 57(9):OCT533–OCT543

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lombardo M, Parravano M, Serrao S et al (2016) Investigation of adaptive optics imaging Biomarkers for detecting pathological changes of the cone mosaic in patients with type 1 diabetes mellitus. PLOS ONE 11:e0151380

    Article  PubMed  PubMed Central  Google Scholar 

  26. Martin JA, Roorda A (2009) Pulsatility of parafoveal capillary leukocytes. Exp Eye Res 88:356–360

    Article  CAS  PubMed  Google Scholar 

  27. Morgan JIW, Dubra A, Wolfe R et al (2009) In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. Invest Ophthalmol Vis Sci 50:1350–1359

    Article  PubMed  Google Scholar 

  28. Morgan JIW, Han G, Klinman E et al (2014) High-resolution adaptive optics retinal imaging of cellular structure in choroideremia. Invest Ophthalmol Vis Sci 55:6381–6397

    Article  PubMed  PubMed Central  Google Scholar 

  29. Obata R, Yanagi Y (2014) Quantitative analysis of cone photoreceptor distribution and its relationship with axial length, age, and early age-related macular degeneration. PLOS ONE 9:e91873

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pallikaris A, Williams DR, Hofer H (2003) The reflectance of single cones in the living human eye. Invest Ophthalmol Vis Sci 44:4580–4592

    Article  PubMed  Google Scholar 

  31. Popovic Z, Knutsson P, Thaung J et al (2011) Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics. Invest Ophthalmol Vis Sci 52:2649–2655

    Article  PubMed  Google Scholar 

  32. Razeen MM, Cooper RF, Langlo CS et al (2016) Correlating photoreceptor mosaic structure to clinical findings in Stargardt disease. Transl Vis Sci Technol 5:6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Roorda A, Duncan JL (2015) Adaptive optics ophthalmoscopy. Annu Rev Vis Sci 1:19–50

    Article  PubMed  PubMed Central  Google Scholar 

  34. Roorda A, Zhang Y, Duncan JL (2007) High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. Invest Ophthalmol Vis Sci 48:2297–2303

    Article  PubMed  Google Scholar 

  35. Rossi EA, Rangel-Fonseca P, Parkins K et al (2013) In vivo imaging of retinal pigment epithelium cells in age related macular degeneration. Biomed Opt Express 4:2527–2539

    Article  PubMed  PubMed Central  Google Scholar 

  36. Scoles D, Sulai YN, Dubra A (2013) In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. Biomed Opt Express 4:1710–1723

    Article  PubMed  PubMed Central  Google Scholar 

  37. Scoles D, Sulai YN, Langlo CS et al (2014) In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci 55:4244–4251

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sheehy CK, Tiruveedhula P, Sabesan R, Roorda A (2015) Active eye-tracking for an adaptive optics scanning laser ophthalmoscope. Biomed Opt Express 6:2412–2423

    Article  PubMed  PubMed Central  Google Scholar 

  39. Song H, Rossi EA, Latchney L et al (2015) Cone and rod loss in Stargardt disease revealed by adaptive optics scanning light ophthalmoscopy. JAMA Ophthalmol. doi:10.1001/jamaophthalmol.2015.2443

    PubMed  PubMed Central  Google Scholar 

  40. Sun LW, Johnson RD, Langlo CS et al (2016) Assessing photoreceptor structure in Retinitis Pigmentosa and usher syndrome. Invest Ophthalmol Vis Sci 57:2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Syed R, Sundquist SM, Ratnam K et al (2013) High-resolution images of retinal structure in patients with choroideremia. Invest Ophthalmol Vis Sci 54:950–961

    Article  PubMed  PubMed Central  Google Scholar 

  42. Talcott KE, Ratnam K, Sundquist SM et al (2011) Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci 52:2219–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tam J, Liu J, Dubra A, Fariss R (2016) In vivo imaging of the human retinal pigment epithelial mosaic using adaptive optics enhanced Indocyanine. Invest Ophthalmol Vis Sci 57:4374–4384

    Article  Google Scholar 

  44. Tam J, Martin JA, Roorda A (2010) Noninvasive visualization and analysis of parafoveal capillaries in humans. Invest Ophthalmol Vis Sci 51:1691–1698

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tuten WS, Tiruveedhula P, Roorda A (2012) Adaptive optics scanning laser ophthalmoscope-based microperimetry. Optom Vis Sci 89:563–574

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang Q, Tuten WS, Lujan BJ et al (2015) Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions. Invest Ophthalmol Vis Sci 56:778–786

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wood EH, Leng T, Schachar IH, Karth PA (2016) Multi-modal longitudinal evaluation of subthreshold laser lesions in human retina, including scanning laser ophthalmoscope-adaptive optics imaging. Ophthalmic Surg Lasers Imaging Retina 47:268–275

    Article  PubMed  Google Scholar 

  48. Zawadzki RJ, Jones SM, Olivier SS et al (2005) Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt Express 13:8532–8546

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Danksagung

Wir danken Toco Y.P. Chui (New York Eye and Ear Infirmary of Mount Sinai, NY, USA), Jacque L. Duncan (University of California San Francisco, CA, USA), Donald C. Hood (Columbia University, NY, USA), Marco Lombardo (Vision Engineering Italy srl, Rom, Italien), Donald T. Miller (Indiana University Bloomington, IN, USA), Jessica I.W. Morgan (University of Pennsylvania, PA, USA), Zoran Popovic (University of Gothenburg, Sweden), Austin Roorda (University of California, Berkeley, CA, USA), Lawrence Sincich (University of Alabama at Birmingham, AL, USA), Johnny Tam (University of California, Berkeley, CA, USA) für die unkomplizierte und kurzfristige Bereitstellung von Bildmaterial sowie Moritz Lindner (Universitätsaugenklinik Bonn, Deutschland) für fachliche Beratung.

Förderung

Emmy Noether-Programm der Deutschen Forschungsgemeinschaft (DFG Ha 5323/5-1) und Carl Zeiss Wissenschaftsfonds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Domdei M.Sc..

Ethics declarations

Interessenkonflikt

N. Domdei, J.L. Reiniger, M. Pfau, P. Charbel Issa, F.G. Holz und W.M. Harmening geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domdei, N., Reiniger, J.L., Pfau, M. et al. Histologie im lebenden Auge. Ophthalmologe 114, 206–214 (2017). https://doi.org/10.1007/s00347-016-0411-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-016-0411-9

Schlüsselwörter

Keywords

Navigation