Zusammenfassung
Hintergrund
Epidemiologische Daten belegen eine weltweite Zunahme der Myopie. Maßnahmen zur Minderung des Myopierisikos und einer Myopieprogression werden dringend benötigt und von Betroffenen immer häufiger nachgefragt.
Methoden
Es erfolgte eine systematische PUBMED-Literaturrecherche in MEDLINE.
Ergebnisse
Myopieprogression kann durch folgende Maßnahmen gemindert werden: Am effektivsten sind Atropin-Augentropfen, vorzugsweise niedrig dosiert, zur Vermeidung von Nebenwirkungen, gefolgt von optischen Korrektionen, wie z. B. multifokale Kontaktlinsen zum Ausgleich eines peripheren hyperopen Defokus, sowie Tageslichtexposition.
Schlussfolgerung
Tageslichtexposition mindert das Myopierisiko. Kinder sollten im Vorschul- und Grundschulalter ausreichend Zeit draußen verbringen. Bei progredienter Myopie kann niedrig dosiertes Atropin verordnet werden. Alternativ oder ergänzend können multifokale Kontaktlinsen angepasst werden.
Abstract
Background
Epidemiologic data demonstrate a rise in myopia prevalence. Therefore interventions to reduce the risk of myopia and its progression are needed and increasingly often asked for.
Methods
Systematic literature search via PubMed in MEDLINE.
Results
Myopia progression can be reduced by the following means which are listed according to their efficacy: (1) Atropine eye drops low dosed to avoid clinically relevant side effects, (2) optical means aiming at the correction of peripheral hyperopic defocus, e. g., multifocal contact lenses, and (3) increased daylight exposure.
Conclusion
Daylight exposure reduces the risk of incident myopia. Children should be advised to spend sufficient time outdoors, especially before and in primary school. Myopia progression can be effectively attenuated by low-dose topical atropine and multifocal contact lenses.
This is a preview of subscription content, access via your institution.
Literatur
Holden B, Sankaridurg P, Smith E, Aller T, Jong M, He M (2014) Myopia, an underrated global challenge to vision: where the current data takes us on myopia control. Eye (Lond) 28(2):142–146
Jung S‑K, Lee JH, Kakizaki H, Jee D (2012) Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in seoul, South Korea. Invest Ophthalmol Vis Sci 53(9):5579–5583
Williams KM, Verhoeven VJM, Cumberland P, Bertelsen G, Wolfram C, Buitendijk GHS et al (2015) Prevalence of refractive error in Europe: the European Eye Epidemiology (E(3)) Consortium. Eur J Epidemiol 30(4):305–315
Cooke Bailey JN, Sobrin L, Pericak-Vance MA, Haines JL, Hammond CJ, Wiggs JL (2013) Advances in the genomics of common eye diseases. Hum Mol Genet 22(R1):R59–65
COMET Group (2013) Myopia stabilization and associated factors among participants in the Correction of Myopia Evaluation Trial (COMET). Invest Ophthalmol Vis Sci 54(13):7871–7884
Verhoeven VJM, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, Höhn R et al (2013) Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet 45(3):314–318
Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL, Francke U et al (2013) Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. Plos Genet 9(2):e1003299
McKnight CM, Sherwin JC, Yazar S, Forward H, Tan AX, Hewitt AW et al (2014) Myopia in young adults is inversely related to an objective marker of ocular sun exposure: the Western Australian Raine cohort study. Am J Ophthalmol 158(5):1079–1085
Cohn H (1892) Lehrbuch der Hygiene des Auges. Urban & Schwarzenegger, Wien und Leipzig
Mirshahi A, Ponto KA, Hoehn R, Zwiener I, Zeller T, Lackner K et al (2014) Myopia and level of education: results from the Gutenberg Health Study. Ophthalmology 121(10):2047–2052
Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W et al (2008) Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 115(8):1279–1285
Gwiazda J, Deng L, Manny R, Norton TT, COMET Study Group (2014) Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. Invest Ophthalmol Vis Sci 55(2):752–758
Dolgin E (2015) The myopia boom. Nature 519(7543):276–278
Brennan NA (2012) Predicted reduction in high myopia for various degrees of myopia control. Cont Lens Anterior Eye 35:e14
Polling JR, Verhoeven VJM, Tideman JWL, Klaver CCW (2016) Duke-Elder’s views on prognosis, prophylaxis, and treatment of myopia: way ahead of his time. Strabismus 24(1):40–43
French AN, Ashby RS, Morgan IG, Rose KA (2013) Time outdoors and the prevention of myopia. Exp Eye Res 114:58–68
Jones LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML, Zadnik K (2007) Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci 48(8):3524–3532
Sherwin JC, Reacher MH, Keogh RH, Khawaja AP, Mackey DA, Foster PJ (2012) The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. Ophthalmology 119(10):2141–2151
Wu P‑C, Tsai C‑L, Wu H‑L, Yang Y‑H, Kuo H‑K (2013) Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology 120(5):1080–1085
He M, Xiang F, Zeng Y, Mai J, Chen Q, Zhang J et al (2015) Effect of time spent outdoors at school on the development of myopia among children in china: A randomized clinical trial. JAMA 314(11):1142–1148
Jin J‑X, Hua W‑J, Jiang X, Wu X‑Y, Yang J‑W, Gao G‑P et al (2015) Effect of outdoor activity on myopia onset and progression in school-aged children in northeast China: the Sujiatun Eye Care Study. BMC Ophthalmol 15:73
Derby H (1874) On the atropine treatment of acquired and progressive myopia. Trans Am Ophthalmol Soc 2:139–154
Walline JJ, Lindsley K, Vedula SS, Cotter SA, Mutti DO, Twelker JD (2011) Interventions to slow progression of myopia in children. Cochrane Database Syst Rev 12:CD004916
Chua W‑H, Balakrishnan V, Chan Y‑H, Tong L, Ling Y, Quah B‑L et al (2006) Atropine for the treatment of childhood myopia. Ophthalmology 113(12):2285–2291
Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A et al (2012) Atropine for the treatment of childhood myopia: safety and efficacy of 0.5 %, 0.1 %, and 0.01 % doses (Atropine for the Treatment of Myopia 2). Ophthalmology 119(2):347–354
Chia A, Lu Q‑S, Tan D (2016) Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01 % Eyedrops. Ophthalmology 123(2):391–399
Morgan IG, He M (2016) An important step forward in myopia prevention: low-dose atropine. Ophthalmology 123(2):232–233
Li S‑M, Wu S‑S, Kang M‑T, Liu Y, Jia S‑M, Li S‑Y et al (2014) Atropine slows myopia progression more in Asian than white children by meta-analysis. Optom Vis Sci 91(3):342–350
Yi S, Huang Y, Yu S‑Z, Chen X‑J, Yi H, Zeng X‑L (2015) Therapeutic effect of atropine 1 % in children with low myopia. J AAPOS. doi:10.1016/j.jaapos.2015.04.006
Clark TY, Clark RA (2015) Atropine 0.01 % eyedrops significantly reduce the progression of childhood myopia. J Ocul Pharmacol Ther. doi:10.1089/jop.2015.0043
Huang J, Wen D, Wang Q, McAlinden C, Flitcroft I, Chen H et al (2016) Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis. Ophthalmology. doi:10.1016/j.ophtha.2015.11.010
Loughman J, Flitcroft DI (2016) The acceptability and visual impact of 0.01 % atropine in a Caucasian population. Br J Ophthalmol. doi:10.1136/bjophthalmol-2015-307861
Cooper J, Eisenberg N, Schulman E, Wang FM (2013) Maximum atropine dose without clinical signs or symptoms. Optom Vis Sci 90(12):1467–1472
Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA et al (2007) Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci 48(6):2510–2519
Smith EL (2013) Optical treatment strategies to slow myopia progression: effects of the visual extent of the optical treatment zone. Exp Eye Res 114:77–88
Anstice NS, Phillips JR (2011) Effect of dual-focus soft contact lens wear on axial myopia progression in children. Ophthalmology 118(6):1152–1161
Lam CSY, Tang WC, Tse DY-Y, Tang YY, To CH (2014) Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2‑year randomised clinical trial. Br J Ophthalmol 98(1):40–45
Aller TA, Liu M, Wildsoet CF (2016) Myopia control with bifocal contact lenses: A randomized clinical trial. Optom Vis Sci 93(4):344–352
Swarbrick HA, Alharbi A, Watt K, Lum E, Kang P (2015) Myopia control during orthokeratology lens wear in children using a novel study design. Ophthalmology 122(3):620–630
Katz J, Schein OD, Levy B, Cruiscullo T, Saw SM, Rajan U et al (2003) A randomized trial of rigid gas permeable contact lenses to reduce progression of children’s myopia. Am J Ophthalmol 136(1):82–90
Danksagung
Herrn F. Widmer, Hecht-Contactlinsen GmbH, danken wir für die kritische Durchsicht des Manuskripts und wertvolle Hinweise.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Interessenkonflikt
W.A. Lagrèze, L. Joachimsen und F. Schaeffel geben an, dass kein Interessenkonflikt besteht.
Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.
Rights and permissions
About this article
Cite this article
Lagrèze, W.A., Joachimsen, L. & Schaeffel, F. Gegenwärtiger Stand der Empfehlungen zur Minderung von Myopieprogression. Ophthalmologe 114, 24–29 (2017). https://doi.org/10.1007/s00347-016-0346-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00347-016-0346-1
Schlüsselwörter
- Licht
- Atropin
- Kontaktlinse
- Augentropfen
- Therapie
Keywords
- Sunlight
- Atropine
- Contact lens
- Eyedrops
- Therapy