Skip to main content

Gegenwärtiger Stand der Empfehlungen zur Minderung von Myopieprogression

Current recommendations for deceleration of myopia progression

Zusammenfassung

Hintergrund

Epidemiologische Daten belegen eine weltweite Zunahme der Myopie. Maßnahmen zur Minderung des Myopierisikos und einer Myopieprogression werden dringend benötigt und von Betroffenen immer häufiger nachgefragt.

Methoden

Es erfolgte eine systematische PUBMED-Literaturrecherche in MEDLINE.

Ergebnisse

Myopieprogression kann durch folgende Maßnahmen gemindert werden: Am effektivsten sind Atropin-Augentropfen, vorzugsweise niedrig dosiert, zur Vermeidung von Nebenwirkungen, gefolgt von optischen Korrektionen, wie z. B. multifokale Kontaktlinsen zum Ausgleich eines peripheren hyperopen Defokus, sowie Tageslichtexposition.

Schlussfolgerung

Tageslichtexposition mindert das Myopierisiko. Kinder sollten im Vorschul- und Grundschulalter ausreichend Zeit draußen verbringen. Bei progredienter Myopie kann niedrig dosiertes Atropin verordnet werden. Alternativ oder ergänzend können multifokale Kontaktlinsen angepasst werden.

Abstract

Background

Epidemiologic data demonstrate a rise in myopia prevalence. Therefore interventions to reduce the risk of myopia and its progression are needed and increasingly often asked for.

Methods

Systematic literature search via PubMed in MEDLINE.

Results

Myopia progression can be reduced by the following means which are listed according to their efficacy: (1) Atropine eye drops low dosed to avoid clinically relevant side effects, (2) optical means aiming at the correction of peripheral hyperopic defocus, e. g., multifocal contact lenses, and (3) increased daylight exposure.

Conclusion

Daylight exposure reduces the risk of incident myopia. Children should be advised to spend sufficient time outdoors, especially before and in primary school. Myopia progression can be effectively attenuated by low-dose topical atropine and multifocal contact lenses.

This is a preview of subscription content, access via your institution.

Literatur

  1. Holden B, Sankaridurg P, Smith E, Aller T, Jong M, He M (2014) Myopia, an underrated global challenge to vision: where the current data takes us on myopia control. Eye (Lond) 28(2):142–146

    Article  CAS  Google Scholar 

  2. Jung S‑K, Lee JH, Kakizaki H, Jee D (2012) Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in seoul, South Korea. Invest Ophthalmol Vis Sci 53(9):5579–5583

    Article  PubMed  Google Scholar 

  3. Williams KM, Verhoeven VJM, Cumberland P, Bertelsen G, Wolfram C, Buitendijk GHS et al (2015) Prevalence of refractive error in Europe: the European Eye Epidemiology (E(3)) Consortium. Eur J Epidemiol 30(4):305–315

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cooke Bailey JN, Sobrin L, Pericak-Vance MA, Haines JL, Hammond CJ, Wiggs JL (2013) Advances in the genomics of common eye diseases. Hum Mol Genet 22(R1):R59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. COMET Group (2013) Myopia stabilization and associated factors among participants in the Correction of Myopia Evaluation Trial (COMET). Invest Ophthalmol Vis Sci 54(13):7871–7884

    Article  Google Scholar 

  6. Verhoeven VJM, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, Höhn R et al (2013) Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet 45(3):314–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL, Francke U et al (2013) Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. Plos Genet 9(2):e1003299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McKnight CM, Sherwin JC, Yazar S, Forward H, Tan AX, Hewitt AW et al (2014) Myopia in young adults is inversely related to an objective marker of ocular sun exposure: the Western Australian Raine cohort study. Am J Ophthalmol 158(5):1079–1085

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cohn H (1892) Lehrbuch der Hygiene des Auges. Urban & Schwarzenegger, Wien und Leipzig

    Google Scholar 

  10. Mirshahi A, Ponto KA, Hoehn R, Zwiener I, Zeller T, Lackner K et al (2014) Myopia and level of education: results from the Gutenberg Health Study. Ophthalmology 121(10):2047–2052

    Article  PubMed  Google Scholar 

  11. Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W et al (2008) Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 115(8):1279–1285

    Article  PubMed  Google Scholar 

  12. Gwiazda J, Deng L, Manny R, Norton TT, COMET Study Group (2014) Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. Invest Ophthalmol Vis Sci 55(2):752–758

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dolgin E (2015) The myopia boom. Nature 519(7543):276–278

    Article  CAS  PubMed  Google Scholar 

  14. Brennan NA (2012) Predicted reduction in high myopia for various degrees of myopia control. Cont Lens Anterior Eye 35:e14

    Article  Google Scholar 

  15. Polling JR, Verhoeven VJM, Tideman JWL, Klaver CCW (2016) Duke-Elder’s views on prognosis, prophylaxis, and treatment of myopia: way ahead of his time. Strabismus 24(1):40–43

    Article  PubMed  Google Scholar 

  16. French AN, Ashby RS, Morgan IG, Rose KA (2013) Time outdoors and the prevention of myopia. Exp Eye Res 114:58–68

    Article  CAS  PubMed  Google Scholar 

  17. Jones LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML, Zadnik K (2007) Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci 48(8):3524–3532

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sherwin JC, Reacher MH, Keogh RH, Khawaja AP, Mackey DA, Foster PJ (2012) The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. Ophthalmology 119(10):2141–2151

    Article  PubMed  Google Scholar 

  19. Wu P‑C, Tsai C‑L, Wu H‑L, Yang Y‑H, Kuo H‑K (2013) Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology 120(5):1080–1085

    Article  PubMed  Google Scholar 

  20. He M, Xiang F, Zeng Y, Mai J, Chen Q, Zhang J et al (2015) Effect of time spent outdoors at school on the development of myopia among children in china: A randomized clinical trial. JAMA 314(11):1142–1148

    Article  CAS  PubMed  Google Scholar 

  21. Jin J‑X, Hua W‑J, Jiang X, Wu X‑Y, Yang J‑W, Gao G‑P et al (2015) Effect of outdoor activity on myopia onset and progression in school-aged children in northeast China: the Sujiatun Eye Care Study. BMC Ophthalmol 15:73

    Article  PubMed  PubMed Central  Google Scholar 

  22. Derby H (1874) On the atropine treatment of acquired and progressive myopia. Trans Am Ophthalmol Soc 2:139–154

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Walline JJ, Lindsley K, Vedula SS, Cotter SA, Mutti DO, Twelker JD (2011) Interventions to slow progression of myopia in children. Cochrane Database Syst Rev 12:CD004916

    Google Scholar 

  24. Chua W‑H, Balakrishnan V, Chan Y‑H, Tong L, Ling Y, Quah B‑L et al (2006) Atropine for the treatment of childhood myopia. Ophthalmology 113(12):2285–2291

    Article  PubMed  Google Scholar 

  25. Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A et al (2012) Atropine for the treatment of childhood myopia: safety and efficacy of 0.5 %, 0.1 %, and 0.01 % doses (Atropine for the Treatment of Myopia 2). Ophthalmology 119(2):347–354

    Article  PubMed  Google Scholar 

  26. Chia A, Lu Q‑S, Tan D (2016) Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01 % Eyedrops. Ophthalmology 123(2):391–399

    Article  PubMed  Google Scholar 

  27. Morgan IG, He M (2016) An important step forward in myopia prevention: low-dose atropine. Ophthalmology 123(2):232–233

    Article  PubMed  Google Scholar 

  28. Li S‑M, Wu S‑S, Kang M‑T, Liu Y, Jia S‑M, Li S‑Y et al (2014) Atropine slows myopia progression more in Asian than white children by meta-analysis. Optom Vis Sci 91(3):342–350

    PubMed  Google Scholar 

  29. Yi S, Huang Y, Yu S‑Z, Chen X‑J, Yi H, Zeng X‑L (2015) Therapeutic effect of atropine 1 % in children with low myopia. J AAPOS. doi:10.1016/j.jaapos.2015.04.006

    PubMed  Google Scholar 

  30. Clark TY, Clark RA (2015) Atropine 0.01 % eyedrops significantly reduce the progression of childhood myopia. J Ocul Pharmacol Ther. doi:10.1089/jop.2015.0043

    PubMed  Google Scholar 

  31. Huang J, Wen D, Wang Q, McAlinden C, Flitcroft I, Chen H et al (2016) Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis. Ophthalmology. doi:10.1016/j.ophtha.2015.11.010

    Google Scholar 

  32. Loughman J, Flitcroft DI (2016) The acceptability and visual impact of 0.01 % atropine in a Caucasian population. Br J Ophthalmol. doi:10.1136/bjophthalmol-2015-307861

    PubMed  Google Scholar 

  33. Cooper J, Eisenberg N, Schulman E, Wang FM (2013) Maximum atropine dose without clinical signs or symptoms. Optom Vis Sci 90(12):1467–1472

    Article  PubMed  Google Scholar 

  34. Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA et al (2007) Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci 48(6):2510–2519

    Article  PubMed  PubMed Central  Google Scholar 

  35. Smith EL (2013) Optical treatment strategies to slow myopia progression: effects of the visual extent of the optical treatment zone. Exp Eye Res 114:77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anstice NS, Phillips JR (2011) Effect of dual-focus soft contact lens wear on axial myopia progression in children. Ophthalmology 118(6):1152–1161

    Article  PubMed  Google Scholar 

  37. Lam CSY, Tang WC, Tse DY-Y, Tang YY, To CH (2014) Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2‑year randomised clinical trial. Br J Ophthalmol 98(1):40–45

    Article  PubMed  Google Scholar 

  38. Aller TA, Liu M, Wildsoet CF (2016) Myopia control with bifocal contact lenses: A randomized clinical trial. Optom Vis Sci 93(4):344–352

    Article  PubMed  Google Scholar 

  39. Swarbrick HA, Alharbi A, Watt K, Lum E, Kang P (2015) Myopia control during orthokeratology lens wear in children using a novel study design. Ophthalmology 122(3):620–630

    Article  PubMed  Google Scholar 

  40. Katz J, Schein OD, Levy B, Cruiscullo T, Saw SM, Rajan U et al (2003) A randomized trial of rigid gas permeable contact lenses to reduce progression of children’s myopia. Am J Ophthalmol 136(1):82–90

    Article  PubMed  Google Scholar 

Download references

Danksagung

Herrn F. Widmer, Hecht-Contactlinsen GmbH, danken wir für die kritische Durchsicht des Manuskripts und wertvolle Hinweise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Lagrèze.

Ethics declarations

Interessenkonflikt

W.A. Lagrèze, L. Joachimsen und F. Schaeffel geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lagrèze, W.A., Joachimsen, L. & Schaeffel, F. Gegenwärtiger Stand der Empfehlungen zur Minderung von Myopieprogression. Ophthalmologe 114, 24–29 (2017). https://doi.org/10.1007/s00347-016-0346-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-016-0346-1

Schlüsselwörter

  • Licht
  • Atropin
  • Kontaktlinse
  • Augentropfen
  • Therapie

Keywords

  • Sunlight
  • Atropine
  • Contact lens
  • Eyedrops
  • Therapy