Skip to main content
Log in

Die vitreoretinale Grenzfläche und ihre Rolle in der Pathogenese vitreomakulärer Erkrankungen

The vitreoretinal interface and its role in the pathogenesis of vitreomaculopathies

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Das vitreoretinale Interface bzw. die vitreoretinale Grenzfläche setzt sich aus der inneren Grenzmembran der Netzhaut, der Glaskörperrinde und einer umgebenden extrazellulären Matrix zusammen. Hyalozyen sind mononukleäre Phagozyten, die in der Glaskörperrinde als einschichtiger Zellverband eingebettet sind. Im Bereich der Makula können im Rahmen der inkompletten hinteren Glaskörperabhebung Adhäsionen der Glaskörperrinde in ihrer gesamten Dicke wie beim vitreomakulären Traktionssyndrom entstehen oder nach lamellärer Aufspaltung der Glaskörperrinde persistieren (Vitreoschisis). Im Rahmen einer inkompletten hinteren Glaskörperabhebung mit Vitreoschisis entstehen relativ dünne hypozelluläre Membranen, wenn die Dissektion innerhalb der Glaskörperrinde hinter der Ebene der als Monolayer angeordneten Hyalozyten erfolgt. Vollzieht sich die Spaltbildung anterior der Hyalozyten, resultieren zellreiche, dicke Membranen. Persistierende vitreopapilläre Adhäsionen begünstigen eine nach außen gerichtete tangentiale Traktion und sind daher oft mit Makulaforamina assoziiert. Nach innen gerichtete Traktion resultiert im Krankheitsbild des „macular pucker“, hier sind persistierende vitreopapilläre Adhäsionen sehr selten.

Abstract

The vitreoretinal interface consists of the inner limiting membrane of the retina, the posterior vitreous cortex, and an intervening extracellular matrix. Hyalocytes are mononuclear phagocytes embedded in the posterior vitreous cortex, in a single layer of sparse density. At the macula, anomalous posterior vitreous detachment (PVD) results in either full-thickness vitreous cortex adhesion with vitreomacular traction syndrome, or partial-thickness adhesion due to vitreoschisis, a split in the posterior vitreous cortex. Anomalous PVD with vitreoschisis splitting behind the level of the monolayer of hyalocytes leaves a relatively thin hypocellular membrane attached to the macula. Vitreoschisis anterior to the level of the hyalocytes leaves a thicker cellular membrane. Persistent vitreopapillary adhesion promotes outward (from the fovea) tangential traction and is therefore associated with macular holes. Inward (centripetal) tangential traction results in macular pucker, almost always in the absence of persistent vitreopapillary adhesion. The English full-text version of this article is available at SpringerLink (under supplemental).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Sebag J (1989) The vitreous – structure, function, and pathobiology. Springer, New York

  2. Salzmann as cited by Hogan MJ, Alvarado JA, Weddel JE (1971) Histology of the human eye: an atlas and textbook. WB Saunders, Philadelphia, S 488

  3. Heegaard S (1997) Morphology of the vitreoretinal border region. Acta Ophthalmol Scand Suppl 222:1–31

    PubMed  Google Scholar 

  4. Halfter W, Sebag J, Cunningham E (2014) Vitreo-retinal interface and inner limiting membrane. In: Sebag J (Hrsg) Vitreous – in health and disease. Springer, New York

  5. Candiello J, Balasubramani M, Schreiber EM et al (2007) Biomechanical properties of native basement membranes. FEBS J 274:2897–2908

    Article  CAS  PubMed  Google Scholar 

  6. Candiello J, Cole GJ, Halfter W (2010) Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane. Matrix Biol 29:402–410

    Article  CAS  PubMed  Google Scholar 

  7. Henrich PB, Monnier CA, Halfter W et al (2012) Nanoscale topographic and biomechanical studies of the human internal limiting membrane. Invest Ophthalmol Vis Sci 53:2561–2570

    Article  PubMed  Google Scholar 

  8. Foos RY (1972) Posterior vitreous detachment. Trans Am Acad Ophthalmol Otolaryngol 76:480

    CAS  PubMed  Google Scholar 

  9. Foos RY (1977) Vitreoretinal juncture over retinal vessels. Albrecht Von Graefes Arch Klin Exp Ophthalmol 204:223–234

    Article  CAS  PubMed  Google Scholar 

  10. Dong LJ, Chung AE (1991) The expression of genes for entactin, laminin A, laminin B1 and laminin B2 in murine lens morphogenesis and eye development. Differentiation 48:157–172

    Article  CAS  PubMed  Google Scholar 

  11. Halfter W, Dong S, Schurer B et al (2000) Composition, synthesis, and assembly of the embryonic chick retinal basal lamina. Dev Biol 220:111–128

    Article  CAS  PubMed  Google Scholar 

  12. Dong L, Chen Y, Lewis M et al (2002) Neurological defects and selective disruption of basement membranes in mice lacking entactin-1/nidogen-1. Lab Invest 82:1617–1630

    Article  CAS  PubMed  Google Scholar 

  13. Halfter W, Willem M, Mayer U (2005) Basement membrane-dependent survival of retinal ganglion cells. Invest Ophthalmol Vis Sci 46:1000–1009

    Article  PubMed  Google Scholar 

  14. Halfter W, Dong S, Schurer B et al (2005) Embryonic synthesis of the inner limiting membrane and vitreous body. Invest Ophthalmol Vis Sci 46:2202–2209

    Article  PubMed  Google Scholar 

  15. Ponsioen TL, Luyn MJA van, Worp RJ van der et al (2008) Human retinal Müller cells synthesize collagens of the vitreous and vitreo-retinal interface in vitro. Mol Vis 14:652–660

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Nakamura T, Murata T, Hisatomi T et al (2003) Ultrastructure of the vitreoretinal interface following the removal of the internal limiting membrane using indocyanine green. Curr Eye Res 27(6):395–399

    Article  PubMed  Google Scholar 

  17. Matsumoto B, Blanks JC, Ryan SJ (1984) Topographic variations in the rabbit and primate internal limiting membrane. Invest Ophthalmol Vis Sci 1:71–82

    Google Scholar 

  18. Streeten BA (1982) Disorders of the vitreous. In: Garner A, Klintworth GK (Hrsg) Pathobiology of ocular disease – a dynamic approach, part B, chap 49. Marcel Dekker, New York, S 1381–1419

  19. Balazs EA (1961) Molecular morphology of the vitreous body. In: Smelser GK (Hrsg) The structure of the eye. Academic Press, New York, S 293–310

  20. Theopold H, Faulborn J (1979) Scanning electron microscopic aspects of the vitreous body. Mod Probl Ophthalmol 20:92

    CAS  PubMed  Google Scholar 

  21. Balazs EA, Toth LZ, Eckl EA, Mitchell AP (1964) Studies on the structure of the vitreous body: XII. Cytological and histochemical studies on the cortical tissue layer. Exp Eye Res 3:57

    Article  CAS  PubMed  Google Scholar 

  22. Gloor BP (1969) Cellular proliferation on the vitreous surface after photocoagulation. Graefes Arch Clin Exp Ophthalmol 178:99

    Article  CAS  Google Scholar 

  23. Bloom GD, Balazs EA (1965) An electron microscope study of hyalocytes. Exp Eye Res 4:249

    Article  CAS  PubMed  Google Scholar 

  24. Hogan MJ, Alvarado JA, Weddel JE (1971) Histology of the human eye: an atlas and textbook. WB Saunders, Philadelphia, S 607

  25. Saga T, Tagawa Y, Takeuchi T et al (1984) Electron microscopic study of cells in vitreous of guinea pig. Jpn J Ophthalmol 28:239

    CAS  PubMed  Google Scholar 

  26. Newsome DA, Linsemayer TF, Trelstad RJ (1976) Vitreous body collagen: evidence for a dual origin from the neural retina and hyalocytes. J Cell Biol 71:59

    Article  CAS  PubMed  Google Scholar 

  27. Sebag J (2010) Vitreous anatomy, aging, and anomalous posteriot vitreous detachment. In: Dartt DA (Hrsg) Encyclopedia of the eye. Academic Press, Oxford, S 307–315

  28. Sebag J (1992) Anatomy and pathology of the vitreo-retinal interface. Eye (Lond) 6 (Pt 6):541–552

  29. Sebag J (2004) Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol 242(8):690–698

    Article  CAS  PubMed  Google Scholar 

  30. Eisner G (1989) Posterior vitreous detachment. Klin Monatsbl Augenheilkd 194(5):389–392

    Article  CAS  PubMed  Google Scholar 

  31. Foos RY, Wheeler NC (1982) Vitreoretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology 89(12):1502–1512

    Article  CAS  PubMed  Google Scholar 

  32. Sebag J (1991) Age-related differences in the human vitreo-retinal interface. Arch Ophthalmol 109:966–971

    Article  CAS  PubMed  Google Scholar 

  33. Sebag J, Niemeyer M, Koss M (2014) Anomalous PVD and vitreoschisis. In: Sebag J (Hrsg) Vitreous – in health and disease. Springer, New York

  34. Duker JS, Kaiser PK, Binder S et al (2013) The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120(12):2611–2619

    Article  PubMed  Google Scholar 

  35. Stalmans P, Duker JS, Kaiser PK et al (2013) OCT-based interpretation of the vitreomacular interface and indications for pharmacologic vitreolysis. Retina 33(10):2003–2011

    Article  CAS  PubMed  Google Scholar 

  36. Krebs I, Brannath W, Glittenberg C et al (2007) Posterior vitreomacular adhesion: a potential risk factor for exudative age-related macular degeneration? Am J Ophthalmol 144(5):741–746

    Article  PubMed  Google Scholar 

  37. Robison CD, Krebs I, Binder S et al (2009) Vitreomacular adhesion in active and end-stage age-related macular degeneration. Am J Ophthalmol 148(1):79–82

    Article  PubMed  Google Scholar 

  38. Mayr-Sponer U, Waldstein SM, Kundi M et al (2013) Influence of the vitreomacular interface on outcomes of ranibizumab therapy in neovascular age-related macular degeneration. Ophthalmology 120(12):2620–2629

    Article  PubMed  Google Scholar 

  39. Uney GO, Unlu N, Acar MA et al (2014) Role of posterior vitreous detachment on outcome of anti-vascular endothelial growth factor treatment in age-related macular degeneration. Retina 34(1):32–37

    Article  CAS  PubMed  Google Scholar 

  40. Bottos J, Elizalde J, Arevalo JF et al (2012) Vitreomacular traction syndrome. J Ophthalmic Vis Res 7(2):148–161

    PubMed Central  PubMed  Google Scholar 

  41. Wang MY, Nguyen D, Hindoyan N et al (2009) Vitreo-papillary adhesion in macular hole and macular pucker. Retina 29(5):644–650

    Article  PubMed  Google Scholar 

  42. Haouchine B, Massin P, Gaudric A (2001) Foveal pseudocyst as the first step in macular hole formation: a prospective study by optical coherence tomography. Ophthalmology 108(1):15–22

    Article  CAS  PubMed  Google Scholar 

  43. Sebag J, Buckingham B, Charles MA, Reiser K (1992) Biochemical abnormalities in vitreous of humans with proliferative diabetic retinopathy. Arch Ophthalmol 110:1472–1479

    Article  CAS  PubMed  Google Scholar 

  44. Sebag J (1993) Abnormalities of human vitreous structure in diabetes. Graefes Arch Clin Exp Ophthalmol 231:257–260

    Article  CAS  PubMed  Google Scholar 

  45. Sebag J (1996) Diabetic vitreopathy. Ophthalmology 103:205–206

    Article  CAS  PubMed  Google Scholar 

  46. Chu TG, Lopez PF, Cano MR et al (1996) Posterior vitreoschisis. An echographic finding in proliferative diabetic retinopathy. Ophthalmology 103(2):315–322

    Article  CAS  PubMed  Google Scholar 

  47. Schwartz SD, Alexander R, Hiscott P, Gregor ZJ (1996) Recognition of vitreoschisis in proliferative diabetic retinopathy. A useful landmark in vitrectomy for diabetic traction retinal detachment. Ophthalmology 103(2):323–328

    Article  Google Scholar 

  48. Sebag J (2011) Vitreoschisis in diabetic macular edema. Invest Ophthalmol Vis Sci 52(11):8455–8456

    Article  CAS  PubMed  Google Scholar 

  49. Kishi S, Demaria C, Shimizu K (1986) Vitreous cortex remnants at the fovea after spontaneous vitreous detachment. Int Ophthalmol 9(4):253–260

    Article  CAS  PubMed  Google Scholar 

  50. Gupta P, Yee KM, Garcia P et al (2011) Vitreoschisis in macular diseases. Br J Ophthalmol 95(3):376–380

    Article  PubMed  Google Scholar 

  51. Sebag J, Wang MY, Nguyen D, Sadun AA (2009) Vitreopapillary adhesion in macular diseases. Trans Am Ophthalmol Soc 107:35–44

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Zhao F, Gandorfer A, Haritoglou C et al (2013) Epiretinal cell proliferation in macular pucker and vitreomacular traction syndrome: analysis of flat-mounted internal limiting membrane specimens. Retina 33(1):77–88

    Article  PubMed  Google Scholar 

  53. Haritoglou C, Reiniger IW, Schaumberger M et al (2006) Five-year follow-up of macular hole surgery with peeling of the internal limiting membrane: update of a prospective study. Retina 26(6):618–622

    Article  PubMed  Google Scholar 

  54. Johnson RN, Gass JD (1988) Idiopathic macular holes. Observations, stages of formation, and implications for surgical intervention. Ophthalmology 95(7):917–924

    Article  CAS  PubMed  Google Scholar 

  55. Smiddy WE, Green WR, Michels RG, Cruz Z de la (1989) Ultrastructural studies of vitreomacular traction syndrome. Am J Ophthalmol 107(2):177–185

    Article  CAS  PubMed  Google Scholar 

  56. Sebag J (2009) Vitreous – the resplendent enigma. Br J Ophthalmol 93(8):989–991

    Article  CAS  PubMed  Google Scholar 

  57. Sakamoto T, Ishibashi T (2011) Hyalocytes – essential cells of the vitreous cavity in vitreoretinal pathophysiology? Retina 31:222–228

    Article  CAS  PubMed  Google Scholar 

  58. Kita T, Sakamoto T, Ishibashi T (2014) Hyalocytes – essential vitreous cells in vitreo-retinal health & disease. In: Sebag J (Hrsg) Vitreous – in health and disease. Springer, New York

  59. Gupta P, Sadun AA, Sebag J (2008) Multifocal retinal contraction in macular pucker analyzed by combined optical coherence tomography/scanning laser ophthalmoscopy. Retina 28:447–452

    Article  PubMed  Google Scholar 

  60. Tozer K, Sebag J (2014) Vitreous in the pathobiology of macular pucker. In: Sebag J (Hrsg) Vitreous – in health and disease. Springer, New York

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J. Sebag gibt an, dass kein Interessenkonflikt besteht. Diese Übersicht beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sebag MD, FACS, FRCOphth, FARVO.

Additional information

Teilweise angelehnt an: Sebag J (Hrsg) (2014) Vitreous – in health and disease. Springer, New York (Vitreous/978-1-4939-1085-4).

Zusatzmaterial online

347_2014_3048_MOESM1_ESM.pdf

English version of "Die vitreoretinale Grenzfläche und ihre Rolle in der Pathogenese vitreomakulärer Erkrankungen" (PDF 805KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebag, J. Die vitreoretinale Grenzfläche und ihre Rolle in der Pathogenese vitreomakulärer Erkrankungen. Ophthalmologe 112, 10–19 (2015). https://doi.org/10.1007/s00347-014-3048-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-014-3048-6

Schlüsselwörter

Keywords

Navigation