Skip to main content
Log in

Pharmakokinetik am vorderen Augenabschnitt

Pharmacokinetics of the anterior eye

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die Pharmakokinetik des vorderen Augenabschnittes umfasst die Applikation, Resorption, Bioverfügbarkeit, Metabolisierung und auch die Elimination vor allem topisch applizierter Medikamente. Dabei muss neben der Überwindung der natürlichen Barrieren in Form von Tränenfilm, Kornea, Konjunktiva und Sklera auch auf die korrekte Applikationstechnik geachtet werden. Es gibt verschiedene, meist noch sich in der experimentellen Phase befindliche Ansätze, um eine längere Verweildauer des Medikamentes an der Augenoberfläche zu gewährleisten und eine einfachere Applikation zu erreichen. Weiterhin gibt es viele Bestrebungen, neuere Konservierungsmittel zu verwenden, mit dem Ziel, weniger toxische Nebenwirkungen zu erzeugen.

Abstract

The pharmacokinetics of the anterior eye comprises the application, resorption, bioavailability, metabolization and elimination of topically administered drugs. In addition to the necessity of the penetration of the substance through the naturally occurring barriers of the eye in the form of the tear film, cornea, conjunctiva and sclera, the correct technique for administration is necessary for an optimal effect of the drug. Several new application devices have been described in the literature but most are still in an experimental phase. The main aims are to increase drug exposure time to the anterior surface of the eye and decrease problems in administration. Furthermore, new preservative agents are in use in order to produce less toxic side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Ahmed I, Patton TF (1987) Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption. Int J Pharm 38:9–21

    Article  CAS  Google Scholar 

  2. Baeyens V, Kaltsatos V, Boisrame B et al (1998) Optimized release of dexamethasone and gentamicin from a soluble ocular insert for the treatment of external ophthalmic infections. J Control Release 52:215–220

    Article  CAS  PubMed  Google Scholar 

  3. Baudouin C (2005) Allergic reaction to topical eyedrops. Curr Opin Allergy Clin Immunol 5:459–463

    Article  CAS  PubMed  Google Scholar 

  4. Brubaker RF (1991) Flow of aqueous humor in humans [The Friedenwald Lecture]. Invest Ophthalmol Vis Sci 32:3145–3166

    CAS  PubMed  Google Scholar 

  5. Davies NM, Farr SJ, Hadgraft J et al (1991) Evaluation of mucoadhesive polymers in ocular drug delivery. I. Viscous solutions. Pharm Res 8:1039–1043

    Article  CAS  PubMed  Google Scholar 

  6. Day DG, Walters TR, Schwartz GF et al (2013) Bimatoprost 0.03 % preservative-free ophthalmic solution versus bimatoprost 0.03 % ophthalmic solution (Lumigan) for glaucoma or ocular hypertension: a 12-week, randomised, double-masked trial. Br J Ophthalmol 97:989–993

    Article  PubMed Central  PubMed  Google Scholar 

  7. Duvvuri S, Majumdar S, Mitra AK (2004) Role of metabolism in ocular drug delivery. Curr Drug Metab 5:507–515

    Article  CAS  PubMed  Google Scholar 

  8. Fukuda M, Shibata S, Shibata N et al (2013) Safety comparison of additives in antiglaucoma prostaglandin (PG) analog ophthalmic formulations. Clin Ophthalmol 7:515–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gaudana R, Jwala J, Boddu SH et al (2009) Recent perspectives in ocular drug delivery. Pharm Res 26:1197–1216

    Article  CAS  PubMed  Google Scholar 

  10. Gebhardt BM, Kaufman HE (1995) Collagen as a delivery system for hydrophobic drugs: studies with cyclosporine. J Ocul Pharmacol Ther 11:319–327

    Article  CAS  PubMed  Google Scholar 

  11. Grass GM, Robinson JR (1988) Mechanisms of corneal drug penetration. II: ultrastructural analysis of potential pathways for drug movement. J Pharm Sci 77:15–23

    Article  CAS  PubMed  Google Scholar 

  12. Gulsen D, Chauhan A (2004) Ophthalmic drug delivery through contact lenses. Invest Ophthalmol Vis Sci 45:2342–2347

    Article  PubMed  Google Scholar 

  13. Gurtler F, Kaltsatos V, Boisrame B et al (1995) Ocular availability of gentamicin in small animals after topical administration of a conventional eye drop solution and a novel long acting bioadhesive ophthalmic drug insert. Pharm Res 12:1791–1795

    Article  CAS  PubMed  Google Scholar 

  14. Hamalainen KM, Kananen K, Auriola S et al (1997) Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci 38:627–634

    CAS  PubMed  Google Scholar 

  15. Hatanaka T, Haramura M, Fei YJ et al (2004) Transport of amino acid-based prodrugs by the Na+- and Cl(−) -coupled amino acid transporter ATB0,+ and expression of the transporter in tissues amenable for drug delivery. J Pharmacol Exp Ther 308:1138–1147

    Article  CAS  PubMed  Google Scholar 

  16. Hiraoka T, Yamamoto T, Okamoto F et al (2012) Time course of changes in ocular wavefront aberration after administration of eye ointment. Eye (Lond) 26:1310–1317

    Google Scholar 

  17. Huang AJ, Tseng SC, Kenyon KR (1989) Paracellular permeability of corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci 30:684–689

    CAS  PubMed  Google Scholar 

  18. Kao KD, Lu DW, Chiang CH et al (1990) Corneal and scleral penetration studies of 6-hydroxyethoxy-2-benzothiazole sulfonamide: a topical carbonic anhydrase inhibitor. J Ocul Pharmacol 6:313–320

    Article  CAS  PubMed  Google Scholar 

  19. Kaye GI, Sibley RC, Hoefle FB (1973) Recent studies on the nature and function of the corneal endothelial barrier. Exp Eye Res 15:585–613

    Article  CAS  PubMed  Google Scholar 

  20. Lin HR, Sung KC (2000) Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J Control Release 69:379–388

    Article  CAS  PubMed  Google Scholar 

  21. Mainardes RM, Silva LP (2004) Drug delivery systems: past, present, and future. Curr Drug Targets 5:449–455

    Article  CAS  PubMed  Google Scholar 

  22. Maul EA, Friedman DS, Quigley HA et al (2012) Impact of eyelid closure on the intraocular pressure lowering effect of prostaglandins: a randomised controlled trial. Br J Ophthalmol 96:250–253

    Article  PubMed  Google Scholar 

  23. Meseguer G, Buri P, Plazonnet B et al (1996) Gamma scintigraphic comparison of eyedrops containing pilocarpine in healthy volunteers. J Ocul Pharmacol Ther 12:481–488

    Article  CAS  PubMed  Google Scholar 

  24. Moya-Ortega MD, Alves TF, Alvarez-Lorenzo C et al (2013) Dexamethasone eye drops containing gamma-cyclodextrin-based nanogels. Int J Pharm 441:507–515

    Article  CAS  PubMed  Google Scholar 

  25. Mundada AS, Shrikhande BK (2008) Formulation and evaluation of ciprofloxacin hydrochloride soluble ocular drug insert. Curr Eye Res 33:469–475

    Article  CAS  PubMed  Google Scholar 

  26. Mundorf T, Wilcox KA, Ousler GW 3rd et al (2003) Evaluation of the comfort of Alphagan P compared with Alphagan in irritated eyes. Adv Ther 20:329–336

    Article  CAS  PubMed  Google Scholar 

  27. Noecker R (2001) Effects of common ophthalmic preservatives on ocular health. Adv Ther 18:205–215

    Article  CAS  PubMed  Google Scholar 

  28. Ohta K, Wiggert B, Taylor AW et al (1999) Effects of experimental ocular inflammation on ocular immune privilege. Invest Ophthalmol Vis Sci 40:2010–2018

    CAS  PubMed  Google Scholar 

  29. Pham XT, Huff JW (1999) Cytotoxicity evaluation of multipurpose contact lens solutions using an in vitro test battery. Clao J 25:28–35

    CAS  PubMed  Google Scholar 

  30. Raviola G (1977) The structural basis of the blood-ocular barriers. Exp Eye Res 25(Suppl):27–63

    Article  PubMed  Google Scholar 

  31. Saettone MF, Giannaccini B, Teneggi A et al (1982) Vehicle effects on ophthalmic bioavailability: the influence of different polymers on the activity of pilocarpine in rabbit and man. J Pharm Pharmacol 34:464–466

    Article  CAS  PubMed  Google Scholar 

  32. Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13:144–151

    Article  CAS  PubMed  Google Scholar 

  33. Schoenwald RD (1990) Ocular drug delivery. Pharmacokinetic considerations. Clin Pharmacokinet 18:255–269

    Article  CAS  PubMed  Google Scholar 

  34. Schrage N, Frentz M, Spoeler F (2012) The Ex Vivo Eye Irritation Test (EVEIT) in evaluation of artificial tears: Purite-preserved versus unpreserved eye drops. Graefes Arch Clin Exp Ophthalmol 250:1333–1340

    Article  CAS  PubMed  Google Scholar 

  35. Shedden A, Laurence J, Tipping R (2001) Efficacy and tolerability of timolol maleate ophthalmic gel-forming solution versus timolol ophthalmic solution in adults with open-angle glaucoma or ocular hypertension: a six-month, double-masked, multicenter study. Clin Ther 23:440–450

    Article  CAS  PubMed  Google Scholar 

  36. Shirasaki Y (2008) Molecular design for enhancement of ocular penetration. J Pharm Sci 97:2462–2496

    Article  CAS  PubMed  Google Scholar 

  37. Tabuchi N, Hattori M, Shimizu M et al (2012) Evaluation of cytotoxic potential of cored soft contact lenses with adsorbed active ingredients from over-the-counter eye drops. J Toxicol Sci 37:639–643

    Article  CAS  PubMed  Google Scholar 

  38. Talwar D, Kulkarni A, Azad R et al (2003) Intraocular ciprofloxacin levels after oral administration in silicone oil-filled eyes. Invest Ophthalmol Vis Sci 44:505–509

    Article  PubMed  Google Scholar 

  39. Tonjum AM (1974) Permeability of horseradish peroxidase in the rabbit corneal epithelium. Acta Ophthalmol (Copenh) 52:650–658

    Google Scholar 

  40. Urtti A, Pipkin JD, Rork G et al (1990) Controlled drug delivery devices for experimental ocular studies with timolol 2. Ocular and systemic absorption in rabbits. Int J Pharm 61:241–249

    Article  CAS  Google Scholar 

  41. Yamada Y, Takayanagi R, Tsuchiya K et al (2001) Assessment of systemic adverse reactions induced by ophthalmic beta-adrenergic receptor antagonists. J Ocul Pharmacol Ther 17:235–248

    Article  CAS  PubMed  Google Scholar 

  42. Zimmerman TJ, Sharir M, Nardin GF et al (1992) Therapeutic index of pilocarpine, carbachol, and timolol with nasolacrimal occlusion. Am J Ophthalmol 114:1–7

    CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. K. Bell, N. Pfeiffer und F.H. Grus geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, K., Pfeiffer, N. & Grus, F. Pharmakokinetik am vorderen Augenabschnitt. Ophthalmologe 111, 107–112 (2014). https://doi.org/10.1007/s00347-013-2931-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-013-2931-x

Schlüsselwörter

Keywords

Navigation