Advertisement

Der Ophthalmologe

, Volume 110, Issue 9, pp 849–861 | Cite as

Humanes Leukozytenantigensystem in der Augenheilkunde

  • T. Lapp
  • D. Reinhold
  • D. Böhringer
  • T. Reinhard
Übersichten

Zusammenfassung

Moleküle des Haupthistokompatibilitätskomplexes („major histocompatibility complex“, MHC) präsentieren Peptidfragmente auf der Oberfläche verschiedenster Zellen, wie z. B. spezialisierter antigenpräsentierender Zellen (APZ) an Effektorzellen des Immunsystems. Dieser Mechanismus ist an verschiedenen Prozessen beteiligt, so am Töten infizierter Zellen, an der Stimulation von Makrophagen zur Destruktion phagozytierter intrazellulärer Vesikel und an der Transformation von B-Zellen in antikörperproduzierende Plasmazellen. Entdeckt wurde die Bedeutung des MHC-Systems zuerst aufgrund von Unterschieden zwischen Leukozyten verschiedener Individuen; in diesem Zusammenhang wird daher oft auch vom humanen Leukozytenantigensystem („human leukocyte antigen“, HLA) gesprochen. Neben ihrer Funktion bei der Aktivierung des Immunsystems sind MHC-Moleküle auch mit verschiedenen Erkrankungen assoziiert; d. h., bestimmte HLA-Phänotypen erhöhen das relative Risiko für verschiedene Krankheiten. Und auch an Transplantatabstoßungsreaktionen sind HLA-Moleküle beteiligt: Wichtigste Grundvoraussetzung für den Erfolg einer Transplantation ist eine möglichst hohe HLA-Übereinstimmung zwischen Spender und Empfänger. Bei der Transplantation von soliden Organen erfolgt daher zuvor jeweils eine HLA-Typisierung. Auch bei der Hornhauttransplantation werden derzeit multizentrische Studien durchgeführt, um die Zusammenhänge von HLA-Klasse-I- und -Klasse-II-Molekülen sowie Major- und Minor-HLA-Molekülen und Transplantationserfolg zu klären. Die HLA-Typisierung ist in verschiedensten medizinischen Bereichen fester Bestandteil der Diagnostik. Mit einem vertretbaren Kosten-Nutzen-Verhältnis bietet sie eine sinnvolle bzw. teilweise notwendige Ergänzung zur Diagnosestellung verschiedenster Erkrankungen; in manchen Fällen besitzt sie zudem eine prognostische Signifikanz. Die vorliegende Übersichtsarbeit gibt einen Überblick über genetische und molekulare Grundlagen, pathophysiologische Zusammenhänge sowie mögliche bzw. sinnvolle diagnostische Anwendungen der HLA-Typisierung im Bereich der Augenheilkunde.

Schlüsselwörter

Immunsystem Haupthistokompatibilitätsantigene HLA-Typisierung HLA-Assoziationen Genome wide association studies 

Human leukocyte antigen (HLA) system in ophthalmology

Abstract

Various inflammatory and non-inflammatory eye diseases are associated with specific HLA isotypes. Therefore, HLA isotyping can be a useful diagnostic tool for these diseases and has already been shown to reduce the rejection rate of corneal allografts. Unfortunately, the volume of published data and the varying quality of these publications complicate obtaining good overview in this field. This review briefly summarizes the genetic structure of the HLA system and elucidates differences between HLA classes I and II in the context of antigen presentation. Possible mechanisms of HLA associations in the field of ophthalmology are discussed, and finally different tools (e.g. genome wide association studies) for assessing associations of HLA isotypes with different ocular diseases are examined.

Keywords

Immune system Major histocompatibility antigens HLA typing HLA associations Genome wide association studies 

Notes

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehungen hin: Dieses Projekt wird unterstützt von der Gertrud-Kusen-Stiftung, Hamburg, Germany, sowie von der Teresa Rosenbaum Golden Charitable Stiftung, Middlesex, United Kingdom (beides an T. Lapp).

Literatur

  1. 1.
    Dausset J (1958) Iso-leuko-antibodies. Acta Haematol 20:156–166CrossRefPubMedGoogle Scholar
  2. 2.
    Ragoussis J, Bloemer K, Pohla H et al (1989) A physical map including a new class I gene (cda12) of the human major histocompatibility complex (A2/B13 haplotype) derived from a monosomy 6 mutant cell line. Genomics 4:301–308CrossRefPubMedGoogle Scholar
  3. 3.
    Posch PE, Cruz I, Bradshaw D et al (2003) Novel polymorphisms and the definition of promoter „alleles“ of the tumor necrosis factor and lymphotoxin alpha loci: inclusion in HLA haplotypes. Genes Immun 4:547–558CrossRefPubMedGoogle Scholar
  4. 4.
    Stephens HA (2001) MICA and MICB genes: Can the enigma of their polymorphism be resolved? Trends Immunol 22:378–385CrossRefPubMedGoogle Scholar
  5. 5.
    Goverdhan SV, Lotery AJ, Howell WM (2005) HLA and eye disease: a synopsis. Int J Immunogenet 32:333–342CrossRefPubMedGoogle Scholar
  6. 6.
    Schulze MS, Wucherpfennig KW (2012) The mechanism of HLA-DM induced peptide exchange in the MHC class II antigen presentation pathway. Curr Opin Immunol 24:105–111CrossRefPubMedGoogle Scholar
  7. 7.
    Denzin LK, Fallas JL, Prendes M et al (2005) Right place, right time, right peptide: DO keeps DM focused. Immunol Rev 207:279–292CrossRefPubMedGoogle Scholar
  8. 8.
    Leddon SA, Sant AJ (2010) Generation of MHC class II-peptide ligands for CD4 T-cell allorecognition of MHC class II molecules. Curr Opin Organ Transplant 15:505–511CrossRefPubMedGoogle Scholar
  9. 9.
    Anonymous (1968) Nomenclature for factors of the HL-a system. Bull World Health Organ 39:483–486Google Scholar
  10. 10.
    Mack SJ, Hollenbach JA (2010) Allele Name Translation Tool and Update NomenCLature: software tools for the automated translation of HLA allele names between successive nomenclatures. Tissue Antigens 75:457–461CrossRefPubMedGoogle Scholar
  11. 11.
    Erlich H (2012) HLA DNA typing: past, present, and future. Tissue Antigens 80:1–11CrossRefPubMedGoogle Scholar
  12. 12.
    Fernandez Vina MA, Hollenbach JA, Lyke KE et al (2012) Tracking human migrations by the analysis of the distribution of HLA alleles, lineages and haplotypes in closed and open populations. Philos Trans R Soc Lond B Biol Sci 367:820–829CrossRefGoogle Scholar
  13. 13.
    Nikolich-Zugich J, Slifka MK, Messaoudi I (2004) The many important facets of T-cell repertoire diversity. Nature reviews. Immunology 4:123–132PubMedGoogle Scholar
  14. 14.
    Arstila TP, Casrouge A, Baron V et al (1999) A direct estimate of the human alphabeta T cell receptor diversity. Science 286:958–961CrossRefPubMedGoogle Scholar
  15. 15.
    Lapp T, Reinhold D, Maier P et al (2012) Old immune system – new information? Importance of mononuclear phagocytes in corneal allograft rejection. Ophthalmologe 109:869–878CrossRefPubMedGoogle Scholar
  16. 16.
    Spierings E, Reinhard T, Goulmy E et al (2007) Matching minor transplantation antigens in penetrating keratoplasty. Ophthalmologe 104:210–212CrossRefPubMedGoogle Scholar
  17. 17.
    Bohringer D, Spierings E, Enczmann J et al (2006) Matching of the minor histocompatibility antigen HLA-A1/H-Y may improve prognosis in corneal transplantation. Transplantation 82:1037–1041CrossRefPubMedGoogle Scholar
  18. 18.
    Khaireddin R, Wachtlin J, Hopfenmuller W et al (2003) HLA-A, HLA-B and HLA-DR matching reduces the rate of corneal allograft rejection. Graefes Arch Clin Exp Ophthalmol 241:1020–1028CrossRefPubMedGoogle Scholar
  19. 19.
    Reinhard T, Bohringer D, Enczmann J et al (2003) HLA class I and II matching improves prognosis in penetrating normal-risk keratoplasty. Dev Ophthalmol 36:42–49CrossRefPubMedGoogle Scholar
  20. 20.
    Bohringer D, Reinhard T, Duquesnoy RJ et al (2004) Beneficial effect of matching at the HLA-A and -B amino-acid triplet level on rejection-free clear graft survival in penetrating keratoplasty. Transplantation 77:417–421CrossRefPubMedGoogle Scholar
  21. 21.
    Reinhard T, Bohringer D, Enczmann J et al (2004) Improvement of graft prognosis in penetrating normal-risk keratoplasty by HLA class I and II matching. Eye (Lond) 18:269–277Google Scholar
  22. 22.
    Illing PT, Vivian JP, Dudek NL et al (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486:554–558PubMedGoogle Scholar
  23. 23.
    Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363:166–176CrossRefPubMedGoogle Scholar
  24. 24.
    Kneifel CE, Kohler AK, Altenburg A et al (2012) Epidemiology of ocular involvement in Adamantiades-Behcets disease. Ophthalmologe 109:542–547CrossRefPubMedGoogle Scholar
  25. 25.
    Altenburg A, Mahr A, Maldini C et al (2012) Epidemiology and clinical aspects of Adamantiades-Behcet disease in Gemany. Current data. Ophthalmologe 109:531–541CrossRefPubMedGoogle Scholar
  26. 26.
    Mizuki N, Meguro A, Ota M et al (2010) Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behcet’s disease susceptibility loci. Nat Genet 42:703–706CrossRefPubMedGoogle Scholar
  27. 27.
    Rahi AH (1979) HLA and eye disease. Br J Ophthalmol 63:283–292CrossRefPubMedGoogle Scholar
  28. 28.
    Ladas ID (1983) Histocompatibility (HLA) antigens and eye diseases other than uveitis. Surv Ophthalmol 27:233–244CrossRefPubMedGoogle Scholar
  29. 29.
    Zakka LR, Reche P, Ahmed AR (2011) Role of MHC Class II genes in the pathogenesis of pemphigoid. Autoimmun Rev 11:40–47CrossRefPubMedGoogle Scholar
  30. 30.
    Mostafa MI, Zarouk WA, El-Kamah GY (2011) Class II alleles HLA-DQB1* 0301 among a seven-membered Egyptian family of a child with oral pemphigoid. Bratisl Lek Listy 112:591–594PubMedGoogle Scholar
  31. 31.
    Delgado JC, Turbay D, Yunis EJ et al (1996) A common major histocompatibility complex class II allele HLA-DQB1* 0301 is present in clinical variants of pemphigoid. Proc Natl Acad Sci U S A 93:8569–8571CrossRefPubMedGoogle Scholar
  32. 32.
    Mondino BJ, Brown SI (1981) Ocular cicatricial pemphigoid. Ophthalmology 88:95–100PubMedGoogle Scholar
  33. 33.
    Tohkin M, Kaniwa N, Saito Y et al (2013) A whole-genome association study of major determinants for allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Pharmacogenomics J 13(1):60–69CrossRefPubMedGoogle Scholar
  34. 34.
    Loiseau P, Lepage V, Djelal F et al (2001) HLA class I and class II are both associated with the genetic predisposition to primary Sjogren syndrome. Hum Immunol 62:725–731CrossRefPubMedGoogle Scholar
  35. 35.
    Fye KH, Terasaki PI, Michalski JP et al (1978) Relationshipp of HLA-Dw3 and HLA-B8 to Sjogren’s syndrome. Arthritis Rheum 21:337–342CrossRefPubMedGoogle Scholar
  36. 36.
    Mann DL, Moutsopoulos HM (1983) HLA DR alloantigens in different subsets of patients with Sjogren’s syndrome and in family members. Ann Rheum Dis 42:533–536CrossRefPubMedGoogle Scholar
  37. 37.
    Baratz KH, Tosakulwong N, Ryu E et al (2010) E2–2 protein and Fuchs’s corneal dystrophy. N Engl J Med 363:1016–1024CrossRefPubMedGoogle Scholar
  38. 38.
    Darrell RW, Suciu-Foca N (1981) HLA DR3 in Thygeson’s superficial punctate keratitis. Tissue Antigens 18:203–204CrossRefPubMedGoogle Scholar
  39. 39.
    Darrell RW (1981) Thygeson’s superficial punctate keratitis: natural history and association with HLA DR3. Trans Am Ophthalmol Soc 79:486–516PubMedGoogle Scholar
  40. 40.
    Bohringer D, Sundmacher R, Reinhard T (2007) HLA B27 seems to promote graft failure following penetrating keratoplasties for herpetic corneal scars. Ophthalmologe 104:705–708CrossRefPubMedGoogle Scholar
  41. 41.
    Jensen KB, Nissen SH, Svejgaard A et al (1984) Recurrent herpetic keratitis and HLA antigens. Acta Ophthalmol 62:61–68CrossRefGoogle Scholar
  42. 42.
    Ramdas WD, Van Koolwijk LM, Ikram MK et al (2010) A genome-wide association study of optic disc parameters. PLoS Genet 6:e1000978CrossRefPubMedGoogle Scholar
  43. 43.
    Khor CC, Ramdas WD, Vithana EN et al (2011) Genome-wide association studies in Asians confirm the involvement of ATOH7 and TGFBR3, and further identify CARD10 as a novel locus influencing optic disc area. Hum Mol Genet 20:1864–1872CrossRefPubMedGoogle Scholar
  44. 44.
    Gil-Carrasco F, Vargas-Alarcon G, Zuniga J et al (1999) HLA-DRB and HLA-DQB loci in the genetic susceptibility to develop glaucoma in Mexicans. Am J Ophthalmol 128:297–300CrossRefPubMedGoogle Scholar
  45. 45.
    Takamoto M, Kaburaki T, Mabuchi A et al (2012) Common variants on chromosome 9p21 are associated with normal tension glaucoma. PloS One 7:e40107CrossRefPubMedGoogle Scholar
  46. 46.
    Burdon KP, Macgregor S, Hewitt AW et al (2011) Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet 43:574–578CrossRefPubMedGoogle Scholar
  47. 47.
    Zierhut M, Kotter I, Lorenz HM (2010) Problems associated with treating ocular disease in underlying inflammatory rheumatic disease. Z Rheumatol 69:393–396CrossRefPubMedGoogle Scholar
  48. 48.
    Anshu A, Chee SP (2007) Posterior scleritis and its association with HLA B27 haplotype. Ophthalmologica 221:275–278CrossRefPubMedGoogle Scholar
  49. 49.
    Derhaag PJ, Linssen A, Broekema N et al (1988) A familial study of the inheritance of HLA-B27-positive acute anterior uveitis. Am J Ophthalmol 105:603–606PubMedGoogle Scholar
  50. 50.
    Derhaag PJ, De Waal LP, Linssen A et al (1988) Acute anterior uveitis and HLA-B27 subtypes. Invest Ophthalmol Vis Sci 29:1137–1140PubMedGoogle Scholar
  51. 51.
    Rosenbaum JT (1992) Acute anterior uveitis and spondyloarthropathies. Rheum Dis Clin North Am 18:143–151PubMedGoogle Scholar
  52. 52.
    Martin TM, Rosenbaum JT (2011) An update on the genetics of HLA B27-associated acute anterior uveitis. Ocul Immunol Inflamm 19:108–114CrossRefPubMedGoogle Scholar
  53. 53.
    Ahn S, Choi HB, Kim TG (2011) HLA and disease associations in Koreans. Immune Netw 11:324–335CrossRefPubMedGoogle Scholar
  54. 54.
    Baarsma GS, Priem HA, Kijlstra A (1990) Association of birdshot retinochoroidopathy and HLA-A29 antigen. Curr Eye Res 9(Suppl):63–68CrossRefPubMedGoogle Scholar
  55. 55.
    Bloch-Michel E, Frau E (1991) Birdshot retinochoroidopathy and HLA-A29+ and HLA-A29-idiopathic retinal vasculitis: comparative study of 56 cases. Can J Ophthalmol 26:361–366PubMedGoogle Scholar
  56. 56.
    Wolf MD, Folk JC, Panknen CA et al (1990) HLA-B7 and HLA-DR2 antigens and acute posterior multifocal placoid pigment epitheliopathy. Arch Ophthalmol 108:698–700CrossRefPubMedGoogle Scholar
  57. 57.
    Kilmartin DJ, Finch A, Acheson RW (1997) Primary association of HLA-B51 with Behcet’s disease in Ireland. Br J Ophthalmol 81:649–653CrossRefPubMedGoogle Scholar
  58. 58.
    Meguro A, Inoko H, Ota M et al (2010) Genetics of Behcet disease inside and outside the MHC. Ann Rheum Dis 69:747–754CrossRefPubMedGoogle Scholar
  59. 59.
    Lapp T, Ness T, Hansen LL et al (2011) Sudden appearance and rapide progression of bilateral visual deterioration. Ophthalmologe 108:1055–1059CrossRefPubMedGoogle Scholar
  60. 60.
    Zhao M, Jiang Y, Abrahams IW (1991) Association of HLA antigens with Vogt-Koyanagi-Harada syndrome in a Han Chinese population. Arch Ophthalmol 109:368–370CrossRefPubMedGoogle Scholar
  61. 61.
    Weisz JM, Holland GN, Roer LN et al (1995) Association between Vogt-Koyanagi-Harada syndrome and HLA-DR1 and -DR4 in Hispanic patients living in southern California. Ophthalmology 102:1012–1015PubMedGoogle Scholar
  62. 62.
    Islam SM, Numaga J, Fujino Y et al (1994) HLA class II genes in Vogt-Koyanagi-Harada disease. Invest Ophthalmol Vis Sci 35:3890–3896PubMedGoogle Scholar
  63. 63.
    Islam SM, Numaga J, Matsuki K et al (1994) Influence of HLA-DRB1 gene variation on the clinical course of Vogt-Koyanagi-Harada disease. Invest Ophthalmol Vis Sci 35:752–756PubMedGoogle Scholar
  64. 64.
    Zamecki KJ, Jabs DA (2010) HLA typing in uveitis: use and misuse. Am J Ophthalmol 149:189–193 e182CrossRefPubMedGoogle Scholar
  65. 65.
    De Kozak Y, Camelo S, Pla M (2008) Pathological aspects of spontaneous uveitis and retinopathy in HLA-A29 transgenic mice and in animal models of retinal autoimmunity: relevance to human pathologies. Ophthalmic Res 40:175–180CrossRefGoogle Scholar
  66. 66.
    Reynard M, Shulman IA, Azen SP et al (1983) Histocompatibility antigens in sympathetic ophthalmia. Am J Ophthalmol 95:216–221CrossRefPubMedGoogle Scholar
  67. 67.
    Davis JL, Mittal KK, Freidlin V et al (1990) HLA associations and ancestry in Vogt-Koyanagi-Harada disease and sympathetic ophthalmia. Ophthalmology 97:1137–1142PubMedGoogle Scholar
  68. 68.
    Sanghvi C, Mercieca K, Jones NP (2010) Very severe HLA B27-associated panuveitis mimicking endophthalmitis: a case series. Ocul Immunol Inflamm 18:139–141CrossRefPubMedGoogle Scholar
  69. 69.
    Spaide RF, Skerry JE, Yannuzzi LA et al (1990) Lack of the HLA-DR2 specificity in multifocal choroiditis and panuveitis. Br J Ophthalmol 74:536–537CrossRefPubMedGoogle Scholar
  70. 70.
    Agardh D, Gaur LK, Agardh E et al (1996) HLA-DQB1*0201/0302 is associated with severe retinopathy in patients with IDDM. Diabetologia 39:1313–1317CrossRefPubMedGoogle Scholar
  71. 71.
    Mimura T, Amano S, Kato S et al (2004) HLA typing is not predictive of proliferative diabetic retinopathy in patients with younger onset type 2 diabetes mellitus. Br J Ophthalmol 88:303–305CrossRefPubMedGoogle Scholar
  72. 72.
    Agardh E, Gaur LK, Lernmark A et al (2004) HLA-DRB1, -DQA1, and -DQB1 subtypes or ACE gene polymorphisms do not seem to be risk markers for severe retinopathy in younger Type 1 diabetic patients. J Diabetes Complications 18:32–36CrossRefPubMedGoogle Scholar
  73. 73.
    Cipriani V, Leung HT, Plagnol V et al (2012) Genome-wide association study of age-related macular degeneration identifies associated variants in the TNXB-FKBPL-NOTCH4 region of chromosome 6p21.3. Hum Mol Genet 21:4138–4150CrossRefPubMedGoogle Scholar
  74. 74.
    Arakawa S, Takahashi A, Ashikawa K et al (2011) Genome-wide association study identifies two susceptibility loci for exudative age-related macular degeneration in the Japanese population. Nat Genet 43:1001–1004CrossRefPubMedGoogle Scholar
  75. 75.
    Yu Y, Bhangale TR, Fagerness J et al (2011) Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration. Hum Mol Genet 20:3699–3709CrossRefPubMedGoogle Scholar
  76. 76.
    Chen W, Stambolian D, Edwards AO et al (2010) Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci U S A 107:7401–7406CrossRefPubMedGoogle Scholar
  77. 77.
    Sobrin L, Ripke S, Yu Y et al (2012) Heritability and genome-wide association study to assess genetic differences between advanced age-related macular degeneration subtypes. Ophthalmology 119:1874–1885CrossRefPubMedGoogle Scholar
  78. 78.
    Maat W, Haasnoot GW, Claas FH et al (2006) HLA Class I and II genotype in uveal melanoma: relation to occurrence and prognosis. Invest Ophthalmol Vis Sci 47:3–6CrossRefPubMedGoogle Scholar
  79. 79.
    Volker-Dieben HJ, D’amaro J, De Lange P et al (1983) HLA and ABO antigens in malignant choroidal melanoma. Clin Exp Immunol 53:581–588PubMedGoogle Scholar
  80. 80.
    Krishnakumar S, Abhyankar D, Lakshmi SA et al (2004) HLA expression in choroidal melanomas: correlation with clinicopathological features. Curr Eye Res 28:409–416CrossRefPubMedGoogle Scholar
  81. 81.
    Kira J (2003) Multiple sclerosis in the Japanese population. Lancet Neurol 2:117–127CrossRefPubMedGoogle Scholar
  82. 82.
    Gregersen PK, Kosoy R, Lee AT et al (2012) Risk for myasthenia gravis maps to a (151) Pro→Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol 72:927–935CrossRefPubMedGoogle Scholar
  83. 83.
    Weyand CM, Hicok KC, Hunder GG et al (1992) The HLA-DRB1 locus as a genetic component in giant cell arteritis. Mapping of a disease-linked sequence motif to the antigen binding site of the HLA-DR molecule. J Clin Invest 90:2355–2361CrossRefPubMedGoogle Scholar
  84. 84.
    Weyand CM, Liao YJ, Goronzy JJ (2012) The immunopathology of giant cell arteritis: diagnostic and therapeutic implications. J Neuroophthalmol 32:259–265CrossRefPubMedGoogle Scholar
  85. 85.
    Auger I, Toussirot E, Roudier J (1997) Molecular mechanisms involved in the association of HLA-DR4 and rheumatoid arthritis. Immunol Res 16:121–126CrossRefPubMedGoogle Scholar
  86. 86.
    Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • T. Lapp
    • 1
    • 3
  • D. Reinhold
    • 2
  • D. Böhringer
    • 3
  • T. Reinhard
    • 3
  1. 1.Division of Infection and ImmunityUniversity College LondonLondonUK
  2. 2.Institut für Molekulare und Klinische ImmunologieOtto-von-Guericke-Universität MagdeburgMagdeburgDeutschland
  3. 3.Universitäts-Augenklinik FreiburgKlinikum der Albert-Ludwigs-UniversitätFreiburgDeutschland

Personalised recommendations