Skip to main content
Log in

Pharmakologische Ansätze zur Behandlung der proliferativen Vitreoretinopathie

Pharmacological approach to treatment of proliferative vitreoretinopathy

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die proliferative Vitreoretinopathie (PVR) ist die wichtigste Komplikation der Netzhautablösung und die Hauptursache für ein Therapieversagen in der vitreoretinalen Chirurgie. Im Rahmen der PVR kommt es zur Neuentstehung fibrozellulärer Membranen, deren Kontraktion zur traktiven Netzhautablösung führen kann. Epithelial mesenchymale Transformation, Adhäsion, Migration und Proliferation von durch die Verletzung der Netzhaut freigesetzten retinalen Pigmentepithelzellen, Gliazellen, Hyalozyten und Immunzellen im Zusammenspiel mit der Freisetzung von Wachstumsfaktoren gelten als initiale Schritte in der Pathogenese der PVR. Eine pharmakologische Beeinflussung dieser frühen zellvermittelten Prozesse ist ein interessanter Ansatz, um die Ergebnisse in der chirurgischen Therapie von Netzhautablösungen in Zukunft zu verbessern oder etwa die Ausbildung einer PVR zu verhindern. In den wenigen vorhandenen klinischen Studien überzeugte keine der bisher getesteten Substanzen durch eine eindeutige Wirksamkeit, sodass sich bislang keine adjuvante pharmakologische Therapie in der klinischen Routine etablieren konnte. Ein zunehmendes Verständnis der zugrunde liegenden Pathogenese der PVR führte in den vergangenen Jahren jedoch zur Entdeckung vieler interessanter experimenteller therapeutischer Ansätze, die einen ersten Grundstein zur Entwicklung einer medikamentösen Therapie der PVR darstellen könnten. Der folgende Beitrag gibt einen Überblick über bisherige klinische Studien zur Testung medikamentöser Therapieansätze und widmet sich insbesondere vielversprechenden experimentellen Ideen.

Abstract

Proliferative vitreoretinopathy (PVR) is the major cause of persistent loss of vision after retinal detachment surgery and is characterized by the formation of scar-like fibrocellular membranes on the neuroretina giving rise to tractional retinal (re-)detachment. Epithelial-mesenchymal transition, adhesion, migration and proliferation of retinal pigment epithelial (RPE) cells disseminated from the normal site at Bruch’s membrane in concert with an activation of glial cells, hyalocytes and immune cells are key cellular events in the onset of the disease. The interplay between the cellular events and various growth factors, cytokines and matrix proteins thereby drives the undesirable formation of PVR membranes. Blocking these pathological events would greatly enhance the overall prognosis of surgical treatment. Clinical trials assessing the efficacy of antiproliferative and anti-inflammatory substances have yielded mixed results. Thus no safe or sufficiently effective pharmacological agent has so far been established in the clinical routine. Recent advances in the fundamental understanding of the pathogenesis of PVR aided in the identification of several new therapeutic targets to block the cellular events intrinsic to the disease. This article gives an overview of the results for adjunct therapies already tested in clinical studies and highlights experimental concepts for novel treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Iandiev I, Bringmann A, Wiedemann P (2010) Proliferative vitreoretinopathy – pathogenesis and therapy. Klin Monatsbl Augenheilkd 227:168–174

    Article  PubMed  CAS  Google Scholar 

  2. Pennock S, Rheaume MA, Mukai S, Kazlauskas A (2011) A novel strategy to develop therapeutic approaches to prevent proliferative vitreoretinopathy. Am J Pathol 179:2931–2940

    Article  PubMed  CAS  Google Scholar 

  3. Grisanti S, Guidry C (1995) Transdifferentiation of retinal pigment epithelial cells from epithelial to mesenchymal phenotype. Invest Ophthalmol Vis Sci 36:391–405

    PubMed  CAS  Google Scholar 

  4. Chen W, Chen H, Hou P et al (2011) Midterm results of low-dose intravitreal triamcinolone as adjunctive treatment for proliferative vitreoretinopathy. Retina 31:1137–1142

    Article  PubMed  CAS  Google Scholar 

  5. Cheema RA, Peyman GA, Fang T et al (2007) Triamcinolone acetonide as an adjuvant in the surgical treatment of retinal detachment with proliferative vitreoretinopathy. Ophthalmic Surg Lasers Imaging 38:365–370

    PubMed  Google Scholar 

  6. Ahmadieh H, Feghhi M, Tabatabaei H et al (2008) Triamcinolone acetonide in silicone-filled eyes as adjunctive treatment for proliferative vitreoretinopathy: a randomized clinical trial. Ophthalmology 115:1938–1943

    Article  PubMed  Google Scholar 

  7. Charteris DG, Aylward GW, Wong D et al (2004) A randomized controlled trial of combined 5-fluorouracil and low-molecular-weight heparin in management of established proliferative vitreoretinopathy. Ophthalmology 111:2240–2245

    Article  PubMed  Google Scholar 

  8. Wickham L, Bunce C, Wong D et al (2007) Randomized controlled trial of combined 5-Fluorouracil and low-molecular-weight heparin in the management of unselected rhegmatogenous retinal detachments undergoing primary vitrectomy. Ophthalmology 114:698–704

    Article  PubMed  CAS  Google Scholar 

  9. Asaria RH, Kon CH, Bunce C et al (2001) Adjuvant 5-fluorouracil and heparin prevents proliferative vitreoretinopathy: results from a randomized, double-blind, controlled clinical trial. Ophthalmology 108:1179–1183

    Article  PubMed  CAS  Google Scholar 

  10. Sundaram V, Barsam A, Virgili G (2013) Intravitreal low molecular weight heparin and 5-Fluorouracil for the prevention of proliferative vitreoretinopathy following retinal reattachment surgery. Cochrane Database Syst Rev 1:CD006421

    PubMed  Google Scholar 

  11. Wiedemann P, Hilgers RD, Bauer P, Heimann K (1998) Adjunctive daunorubicin in the treatment of proliferative vitreoretinopathy: results of a multicenter clinical trial. Daunomycin Study Group. Am J Ophthalmol 126:550–559

    Article  PubMed  CAS  Google Scholar 

  12. Kumar A, Nainiwal S, Choudhary I et al (2002) Role of daunorubicin in inhibiting proliferative vitreoretinopathy after retinal detachment surgery. Clin Experiment Ophthalmol 30:348–351

    Article  PubMed  Google Scholar 

  13. Fekrat S, Juan E de Jr, Campochiaro PA (1995) The effect of oral 13-cis-retinoic acid on retinal redetachment after surgical repair in eyes with proliferative vitreoretinopathy. Ophthalmology 102:412–418

    Article  PubMed  CAS  Google Scholar 

  14. Chang YC, Hu DN, Wu WC (2008) Effect of oral 13-cis-retinoic acid treatment on postoperative clinical outcome of eyes with proliferative vitreoretinopathy. Am J Ophthalmol 146:440–446

    Article  PubMed  CAS  Google Scholar 

  15. Berman DH, Gombos GM (1989) Proliferative vitreoretinopathy: does oral low-dose colchicine have an inhibitory effect? A controlled study in humans. Ophthalmic Surg 20:268–272

    PubMed  CAS  Google Scholar 

  16. Schiff WM, Hwang JC, Ober MD et al (2007) Safety and efficacy assessment of chimeric ribozyme to proliferating cell nuclear antigen to prevent recurrence of proliferative vitreoretinopathy. Arch Ophthalmol 125:1161–1167

    Article  PubMed  CAS  Google Scholar 

  17. Turgut B, Uyar F, Ustundag B et al (2012) The impact of tacrolimus on growth factors in experimental proliferative vitreoretinopathy. Retina 32:232–241

    Article  PubMed  CAS  Google Scholar 

  18. Falkenstein IA, Cheng L, Wong-Staal F et al (2008) Toxicity and intraocular properties of a novel long-acting anti-proliferative and anti-angiogenic compound IMS2186. Curr Eye Res 33:599–609

    Article  PubMed  CAS  Google Scholar 

  19. Eibl KH, Lewis GP, Betts K et al (2007) The effect of alkylphosphocholines on intraretinal proliferation initiated by experimental retinal detachment. Invest Ophthalmol Vis Sci 48:1305–1311

    Article  PubMed  Google Scholar 

  20. Tahara YR, Sakamoto TR, Oshima YR et al (1999) The antidepressant hypericin inhibits progression of experimental proliferative vitreoretinopathy. Curr Eye Res 19:323–329

    Article  PubMed  CAS  Google Scholar 

  21. Lee JJ, Park JK, Kim YT et al (2002) Effect of 2’-benzoyl-oxycinnamaldehyde on RPE cells in vitro and in an experimental proliferative vitreoretinopathy model. Invest Ophthalmol Vis Sci 43:3117–3124

    PubMed  Google Scholar 

  22. Wu PC, Tai MH, Hu DN et al (2008) Cyclin-dependent kinase inhibitor roscovitine induces cell cycle arrest and apoptosis in rabbit retinal pigment epithelial cells. J Ocul Pharmacol Ther 24:25–33

    Article  PubMed  CAS  Google Scholar 

  23. Berger AS, Cheng CK, Pearson PA et al (1996) Intravitreal sustained release corticosteroid-5-fluoruracil conjugate in the treatment of experimental proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 37:2318–2325

    PubMed  CAS  Google Scholar 

  24. Cardillo JA, Farah ME, Mitre J et al (2004) An intravitreal biodegradable sustained release naproxen and 5-fluorouracil system for the treatment of experimental post-traumatic proliferative vitreoretinopathy. Br J Ophthalmol 88:1201–1205

    Article  PubMed  CAS  Google Scholar 

  25. Oshima Y, Sakamoto T, Hisatomi T et al (2002) Gene transfer of soluble TGF-beta type II receptor inhibits experimental proliferative vitreoretinopathy. Gene Ther 9:1214–1220

    Article  PubMed  CAS  Google Scholar 

  26. Saika S, Yamanaka O, Ikeda K et al (2005) Inhibition of p38MAP kinase suppresses fibrotic reaction of retinal pigment epithelial cells. Lab Invest 85:838–850

    Article  PubMed  CAS  Google Scholar 

  27. Ito S, Sakamoto T, Tahara Y et al (1999) The effect of tranilast on experimental proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 237:691–696

    Article  PubMed  CAS  Google Scholar 

  28. Kita T, Hata Y, Arita R et al (2008) Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Proc Natl Acad Sci U S A 105:17504–17509

    Article  PubMed  CAS  Google Scholar 

  29. Lei H, Velez G, Cui J et al (2010) N-acetylcysteine suppresses retinal detachment in an experimental model of proliferative vitreoretinopathy. Am J Pathol 177:132–140

    Article  PubMed  CAS  Google Scholar 

  30. Velez G, Weingarden AR, Lei H et al (2013) SU9518 inhibits proliferative vitreoretinopathy in fibroblast and genetically modified Muller cell-induced rabbit models. Invest Ophthalmol Vis Sci 54:1392–1397

    Article  PubMed  CAS  Google Scholar 

  31. Nassar K, Luke J, Luke M et al (2011) The novel use of decorin in prevention of the development of proliferative vitreoretinopathy (PVR). Graefes Arch Clin Exp Ophthalmol 249:1649–1660

    Article  PubMed  Google Scholar 

  32. Yang CH, Huang TF, Liu KR et al (1996) Inhibition of retinal pigment epithelial cell-induced tractional retinal detachment by disintegrins, a group of Arg-Gly-Asp-containing peptides from viper venom. Invest Ophthalmol Vis Sci 37:843–854

    PubMed  CAS  Google Scholar 

  33. Zahn G, Volk K, Lewis GP et al (2010) Assessment of the integrin alpha5beta1 antagonist JSM6427 in proliferative vitreoretinopathy using in vitro assays and a rabbit model of retinal detachment. Invest Ophthalmol Vis Sci 51:1028–1035

    Article  PubMed  Google Scholar 

  34. Liang CM, Tai MC, Chang YH et al (2011) Glucosamine inhibits epithelial-to-mesenchymal transition and migration of retinal pigment epithelium cells in culture and morphologic changes in a mouse model of proliferative vitreoretinopathy. Acta Ophthalmol 89:e505–e514

    Article  PubMed  Google Scholar 

  35. Wenkel H, Kent D, Hiscott P et al (1999) Modulation of retinal pigment epithelial cell behavior by Agaricus bisporus lectin. Invest Ophthalmol Vis Sci 40:3058–3062

    PubMed  CAS  Google Scholar 

  36. Alge-Priglinger CS, Andre S, Kreutzer TC et al (2009) Inhibition of human retinal pigment epithelial cell attachment, spreading, and migration by the human lectin galectin-1. Mol Vis 15:2162–2173

    PubMed  CAS  Google Scholar 

  37. Alge-Priglinger CS, Andre S, Schoeffl H et al (2011) Negative regulation of RPE cell attachment by carbohydrate-dependent cell surface binding of galectin-3 and inhibition of the ERK-MAPK pathway. Biochimie 93:477–488

    Article  PubMed  CAS  Google Scholar 

  38. Jonas JB, Söfker A, Hayler J et al (2003) Intravitreal crystalline triamcinolone acetonide as an additional tool in pars plana vitrectomy for complicated proliferative vitreoretinopathy? Acta Ophthalmol Scand 81:663–665

    Article  PubMed  Google Scholar 

  39. Williams RG, Chang S, Comaratta MR et al (1996) Does the presence of heparin and dexamethasone in the vitrectomy infusate reduce reproliferation in proliferative vitreoretinopathy? Graefes Arch Clin Exp Ophthalmol 234:496–503

    Article  PubMed  CAS  Google Scholar 

  40. Blumenkranz M, Hernandez E, Ophir A et al (1984) 5-fluorouracil: new applications in complicated retinal detachment for an established antimetabolite. Ophthalmology 91:122–130

    PubMed  CAS  Google Scholar 

  41. Garcia RA, Sanchez JG, Arevalo JF (2007) Combined 5-fluorouracil, low-molecular-weight heparin, and silicone oil in the management of complicated retinal detachment with proliferative vitreoretinopathy grade C. Ophthalmic Surg Lasers Imaging 38:276–282

    PubMed  Google Scholar 

  42. Wiedemann P, Lemmen K, Schmiedl R, Heimann K (1987) Intraocular daunorubicin for the treatment and prophylaxis of traumatic proliferative vitreoretinopathy. Am J Ophthalmol 104:10–14

    PubMed  CAS  Google Scholar 

  43. Wiedemann P, Leinung C, Hilgers RD, Heimann K (1991) Daunomycin and silicone oil for the treatment of proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 229:150–152

    Article  PubMed  CAS  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C.S. Priglinger und S. Priglinger geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.S. Priglinger FEBO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priglinger, C., Priglinger, S. Pharmakologische Ansätze zur Behandlung der proliferativen Vitreoretinopathie. Ophthalmologe 110, 948–959 (2013). https://doi.org/10.1007/s00347-013-2832-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-013-2832-z

Schlüsselwörter

Keywords

Navigation