Skip to main content
Log in

Neuroprotektive Ansätze

Neuroprotective approaches

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Seit der Einführung der vitreoretinalen Chirurgie vor über 40 Jahren gab es zunächst stetig Bestrebungen, toxische Effekte, die z. B. durch Spüllösungen, Endoillumination oder mechanische Manipulation entstehen können, zu reduzieren. In letzter Zeit gibt es auch Versuche, neurodegenerative Prozesse am Auge durch pharmakologische Intervention zu verhindern. Als ein Beispiel eines solchen neuroprotektiven Ansatzes kann die Verwendung von Taurin als Zusatzstoff in Spüllösungen angesehen werden. Der Einsatz von therapeutischen Substanzen im Rahmen der vitreoretinalen Chirurgie bedeutet hinsichtlich der klinischen Zulassung einen erhöhten Aufwand an präklinischer Testung und klinischen Studien. Derzeit werden praktisch keine Neuroprotektiva im Rahmen vitreoretinaler Chirurgie routinemäßig eingesetzt. Experimentelle Studien deuten jedoch auf ein hohes Potenzial verschiedenster neuroprotektiver Substanzen hin. Der nachfolgende Beitrag soll einen Überblick über aktuelle neuroprotektive Ansätze mit potenzieller Anwendbarkeit in der vitreoretinalen Chirurgie geben und deren klinische Eignung kritisch diskutieren.

Abstract

After introduction of vitreoretinal surgery more than 40 years ago, further development of the procedure involved a continuous reduction of potential toxic effects by irrigating solutions, endoillumination or mechanical manipulation. Recently, additional efforts were made to prevent neurodegeneration via pharmacological intervention. Taurine as additive for irrigating solutions can be considered as an example for neuroprotectants in vitreoretinal surgery. Approval of neuroprotective agents demands an increased effort for preclinical and clinical evaluation. To date, only few neuroprotective substances are used in clinical routine in the context of vitreoretinal surgery, however, experimental data suggest a high potential of various neuroprotective agents. The following article gives an overview of current neuroprotective approaches feasible for vitreoretinal surgery and a critical analysis of their clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Machemer R, Buettner H, Norton EW et al (1971) Vitrectomy: a pars plana approach. Trans Am Acad Ophthalmol Otolaryngol 75:813–820

    PubMed  CAS  Google Scholar 

  2. Moorhead LC, Redburn DA, Merritt J et al (1979) The effects of intravitreal irrigation during vitrectomy on the electroretinogram. Am J Ophthalmol 88:239–245

    PubMed  CAS  Google Scholar 

  3. Januschowski K, Zhour A, Lee A et al (2012) Testing the biocompatibility of a glutathione-containing intra-ocular irrigation solution by using an isolated perfused bovine retina organ culture model – an alternative to animal testing. Altern Lab Anim 40:23–32

    PubMed  CAS  Google Scholar 

  4. Remy M, Thaler S, Schumann RG et al (2008) An in vivo evaluation of Brilliant Blue G in animals and humans. Br J Ophthalmol 92:1142–1147

    Article  PubMed  CAS  Google Scholar 

  5. Schwartz M, Belkin M, Yoles E et al (1996) Potential treatment modalities for glaucomatous neuropathy: neuroprotection and neuroregeneration. J Glaucoma 5:427–432

    PubMed  CAS  Google Scholar 

  6. Faktorovich EG, Steinberg RH, Yasumura D et al (1990) Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature 347:83–86

    Article  PubMed  CAS  Google Scholar 

  7. Kauper K, McGovern C, Sherman S et al (2012) Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Invest Ophthalmol Vis Sci 53:7484–7491

    Article  PubMed  CAS  Google Scholar 

  8. Liu Y, Tao L, Fu X et al (2013) BDNF protects retinal neurons from hyperglycemia through the TrkB/ERK/MAPK pathway. Mol Med Rep 7:1773–1778

    PubMed  Google Scholar 

  9. Harper MM, Grozdanic SD, Blits B et al (2011) Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest Ophthalmol Vis Sci 52:4506–4515

    Article  PubMed  CAS  Google Scholar 

  10. Schuettauf F, Vorwerk C, Naskar R et al (2004) Adeno-associated viruses containing bFGF or BDNF are neuroprotective against excitotoxicity. Curr Eye Res 29:379–386

    Article  PubMed  CAS  Google Scholar 

  11. Foxton RH, Finkelstein A, Vijay S et al (2013) VEGF-A is necessary and sufficient for retinal neuroprotection in models of experimental glaucoma. Am J Pathol 182:1379–1390

    Article  PubMed  CAS  Google Scholar 

  12. Grimm C, Wenzel A, Groszer M et al (2002) HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 8:718–724

    Article  PubMed  CAS  Google Scholar 

  13. Mukherjee PK, Marcheselli VL, Serhan CN et al (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101:8491–8496

    Article  PubMed  CAS  Google Scholar 

  14. El-Remessy AB, Khalil IE, Matragoon S et al (2003) Neuroprotective effect of (-)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. Am J Pathol 163:1997–2008

    Article  PubMed  CAS  Google Scholar 

  15. Thaler S, Fiedorowicz M, Rejdak R et al (2010) Neuroprotective effects of tempol on retinal ganglion cells in a partial optic nerve crush rat model with and without iron load. Exp Eye Res 90:254–260

    Article  PubMed  CAS  Google Scholar 

  16. Thaler S, Fiedorowicz M, Grieb P et al (2011) Neuroprotective effects of tempol acyl esters against retinal ganglion cell death in a rat partial optic nerve crush model. Acta Ophthalmol 89:e555–e560

    Article  PubMed  CAS  Google Scholar 

  17. Chen F, Zhang HQ, Zhu J et al (2012) Puerarin enhances superoxide dismutase activity and inhibits RAGE and VEGF expression in retinas of STZ-induced early diabetic rats. Asian Pac J Trop Med 5:891–896

    Article  PubMed  CAS  Google Scholar 

  18. Woldemussie E, Yoles E, Schwartz M et al (2002) Neuroprotective effect of memantine in different retinal injury models in rats. J Glaucoma 11:474–480

    Article  PubMed  Google Scholar 

  19. Schuettauf F, Quinto K, Naskar R et al (2002) Effects of anti-glaucoma medications on ganglion cell survival: the DBA/2J mouse model. Vision Res 42:2333–2337

    Article  PubMed  CAS  Google Scholar 

  20. Esfahani MR, Harandi ZA, Movasat M et al (2012) Memantine for axonal loss of optic neuritis. Graefes Arch Clin Exp Ophthalmol 250:863–869

    Article  PubMed  CAS  Google Scholar 

  21. Schuettauf F, Rejdak R, Thaler S et al (2006) Citicoline and lithium rescue retinal ganglion cells following partial optic nerve crush in the rat. Exp Eye Res 83:1128–1134

    Article  PubMed  CAS  Google Scholar 

  22. Schuettauf F, Stein T, Choragiewicz TJ et al (2011) Caspase inhibitors protect against NMDA-mediated retinal ganglion cell death. Clin Experiment Ophthalmol 39:545–554

    Article  PubMed  Google Scholar 

  23. Barber AJ, Lieth E, Khin SA et al (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102:783–791

    Article  PubMed  CAS  Google Scholar 

  24. Liu Y, Tang L, Chen B (2012) Effects of antioxidant gene therapy on retinal neurons and oxidative stress in a model of retinal ischemia/reperfusion. Free Radic Biol Med 52:909–915

    Article  PubMed  CAS  Google Scholar 

  25. Kuhn F, Morris R, Massey M (1991) Photic retinal injury from endoillumination during vitrectomy. Am J Ophthalmol 111:42–46

    PubMed  CAS  Google Scholar 

  26. Takayama K, Sato T, Karasawa Y et al (2012) Phototoxicity of indocyanine green and Brilliant Blue G under continuous fluorescent illumination on cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 53:7389–7394

    Article  PubMed  CAS  Google Scholar 

  27. Thaler S, Voykov B, Willmann G et al (2012) Tempol protects against intravitreous indocyanine green-induced retinal damage in rats. Graefes Arch Clin Exp Ophthalmol 250:1597–1606

    Article  PubMed  CAS  Google Scholar 

  28. Schultheiss M, Ruschenburg H, Warga M et al (2012) Neuroprotective effects of a taurine-containing irrigation solution for vitrectomy. Retina 32:1343–1349

    PubMed  CAS  Google Scholar 

  29. Notomi S, Hisatomi T, Murakami Y et al (2013) Dynamic increase in extracellular ATP accelerates photoreceptor cell apoptosis via ligation of P2RX7 in subretinal hemorrhage. PLoS One 8:e53338

    Article  PubMed  CAS  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. S. Thaler, C. Haritoglou und F. Schuettauf geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thaler FEBO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaler, S., Haritoglou, C. & Schuettauf, F. Neuroprotektive Ansätze. Ophthalmologe 110, 941–947 (2013). https://doi.org/10.1007/s00347-013-2831-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-013-2831-0

Schlüsselwörter

Keywords

Navigation