Skip to main content
Log in

Neue pathogenetische Erkenntnisse zum Pseudoexfoliations-Syndrom/Glaukom

Therapeutisch relevant?

New pathogenetic insights into pseudoexfoliation syndrome/glaucoma

Therapeutically relevant?

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Das Pseudoexfoliations (PEX)-Glaukom ist ein hypertensives, chronisches, sekundäres Offenwinkelglaukom, das verglichen mit anderen Glaukomformen eine höhere Progressionsrate und größere Vulnerabilität für einen Glaukomschaden aufweist. Das zugrunde liegende Krankheitsbild des PEX-Syndroms repräsentiert einen genetisch determinierten, generalisierten, fibrotischen Prozess, der zu progressiven Ablagerungen eines abnormalen extrazellulären Materials in den Kammerwasserabflussstrukturen und weiteren intra- und extraokulären Geweben führt. Erhöhte Konzentrationen fibrogener Wachstumsfaktoren wie TGF-β1, verminderte Aktivitäten proteolytischer Enzyme, subklinische entzündliche Prozesse sowie vermehrter zellulärer und oxidativer Stress sind an diesem fibrotischen Allgemeinprozess kausal beteiligt. Genetische Studien konnten eine signifikante Assoziation zwischen bestimmten Polymorphismen im LOXL1 (Lysyloxidase-like 1)-Gen, das für ein quervernetzendes Matrixenzym kodiert, mit PEX-Syndrom/Glaukom identifizieren. Unsere Analysen konnten zeigen, dass LOXL1 einerseits an der Bildung und Akkumulation des PEX-Materials in den Abflussstrukturen und damit an der Druckerhöhung beteiligt ist, andererseits auch bindegewebige und biomechanische Veränderungen der Lamina cribrosa induziert und damit zu einem PEX-spezifischen Risiko für ein Sekundärglaukom prädisponiert. Aus diesen pathophysiologischen Befunden ergeben sich direkte therapeutische Konsequenzen für das Management von PEX-Patienten im Sinne einer akkuraten Diagnostik, einer engmaschigen Kontrolle und einer rigorosen Umsetzung drucksenkender Maßnahmen.

Abstract

Pseudoexfoliation (PEX) syndrome is a genetically determined, generalized disease of the extracellular matrix leading to the progressive deposition of an abnormal fibrillar material in various intraocular and extraocular tissues including the trabecular meshwork. It thus represents the most common identifiable cause of open-angle glaucoma and a leading cause of blindness worldwide. The PEX-specific fibrotic matrix process, a stress-induced elastosis, is characterized by an excessive production and abnormal cross-linking of elastic microfibrils into fibrillar PEX aggregates. Co-modulating factors triggering this fibrotic process include elevated concentrations of fibrogenic growth factors, such as TGF-β1, reduced activity of proteolytic enzymes, subtle inflammatory processes and various external stress factors, such as oxidative stress. Genetic studies identified a highly significant association between several polymorphisms in the LOXL1 (lysyl oxidase-like 1) gene with both PEX syndrome and PEX glaucoma. As these LOXL1 risk variants were found to occur in almost 100% of PEX patients throughout all geographical populations worldwide, LOXL1 appears to represent a principal risk factor for manifestation of the PEX phenotype. LOXL1 is a pivotal cross-linking enzyme in extracellular matrix metabolism and seems to be specifically required for elastic fiber formation and stabilization. The available data suggest that LOXL1 enzyme function and expression are dysregulated in PEX tissues and thereby play a central role in glaucoma development. On the one hand, increased expression of LOXL1 and elastic fiber components contributes to the formation of abnormally cross-linked PEX aggregates in the outflow pathways leading to increased outflow resistance and intraocular pressure. On the other hand, reduced expression and inadequate tissue levels of LOXL1 may lead to degenerative tissue alterations, particularly in the lamina cribrosa adversely affecting the biomechanical properties of this critical tissue. This PEX-specific elastinopathy of the lamina cribrosa rendering PEX eyes more vulnerable to pressure-induced optic nerve damage may constitute an independent risk factor for glaucoma development. The findings may have direct consequences for the clinical management of PEX patients underlining the need for an exact diagnosis, a strict IOP-reducing therapy and a close and regular follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Ritch R, Schlötzer-Schrehardt U (2001) Exfoliation syndrome. Surv Ophthalmol 45:265–315

    Article  PubMed  CAS  Google Scholar 

  2. Schlötzer-Schrehardt U, Naumann GOH (2006) Perspective: ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol 141:921–937

    Article  PubMed  Google Scholar 

  3. Ritch R (1994) Exfoliation syndrome: the most common identifiable cause of open-angle glaucoma. J Glaucoma 3:176–178

    PubMed  CAS  Google Scholar 

  4. Naumann GOH, Schlötzer-Schrehardt U, Küchle M (1998) Pseudoexfoliation syndrome for the comprehensive ophthalmologist: Intraocular and systemic manifestations. Ophthalmology 105:951–968

    Article  PubMed  CAS  Google Scholar 

  5. Schumacher S, Schlötzer-Schrehardt U, Martus P et al (2001) Pseudoexfoliation syndrome and aneurysms of the abdominal aorta. Lancet 357:359–360

    Article  PubMed  CAS  Google Scholar 

  6. Mitchell P, Wang JJ, Smith W (1997) Association of pseudoexfoliation syndrome with increased vascular risk. Am J Ophthalmol 124:685–687

    PubMed  CAS  Google Scholar 

  7. Ritland JS, Egge K, Lydersen S et al (2004) Exfoliative glaucoma and primary open-angle glaucoma: associations with death causes and comorbidity. Acta Ophthalmol Scand 82:401–404

    Article  PubMed  CAS  Google Scholar 

  8. Roedl JB, Bleich S, Reulbach U et al (2007) Vitamin deficiency and hyperhomocysteinemia in pseudoexfoliation glaucoma. J Neural Transm 114:571–575

    Article  PubMed  CAS  Google Scholar 

  9. Ovodenko B, Rostagno A, Neubert TA et al (2007) Proteomic analysis of exfoliation deposits. Invest Ophthalmol Vis Sci 48:1447–1457

    Article  PubMed  Google Scholar 

  10. Zenkel M, Kruse FE, Naumann GOH, Schlötzer-Schrehardt U (2007) Impaired cytoprotective mechanisms in eyes with pseudoexfoliation syndrome/glaucoma. Invest Ophthalmol Vis Sci 48:5558–5566

    Article  PubMed  Google Scholar 

  11. Zenkel M, Lewczuk P, Jünemann A et al (2010) Pro-inflammatory cytokines are involved in initiation of the abnormal matrix process in pseudoexfoliation syndrome/glaucoma. Am J Pathol 176:2868–2879

    Article  PubMed  CAS  Google Scholar 

  12. Schlötzer-Schrehardt U (2010) Oxidativer Stress beim Pseudoexfoliationsglaukom. Klin Monatsbl Augenheilkd 227:108–113

    Article  PubMed  Google Scholar 

  13. Arnarsson A, Damji KF, Sasaki H et al (2009) Pseudoexfoliation in the Reykjavik Eye Study: five-year incidence and changes in related ophthalmologic variables. Am J Ophthalmol 148:291–297

    Article  PubMed  Google Scholar 

  14. Johnson TV, Fan S, Camras CB, Toris CB (2008) Aqueous humor dynamics in exfoliation syndrome. Arch Ophthalmol 126:914–920

    Article  PubMed  Google Scholar 

  15. Schlötzer-Schrehardt U, Naumann GOH (1995) Trabecular meshwork in pseudoexfoliation syndrome with and without open-angle glaucoma. A morphometric, ultrastructural study. Invest Ophthalmol Vis Sci 36:1750–1764

    PubMed  Google Scholar 

  16. Gottanka J, Flügel-Koch C, Martus P (1997) Correlation of pseudoexfoliative material and optic nerve damage in pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci 38:2435–2446

    PubMed  CAS  Google Scholar 

  17. Thorleifsson G, Magnusson KP, Sulem P et al (2007) Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 317:1397–1400

    Article  PubMed  CAS  Google Scholar 

  18. Pasutto F, Krumbiegel M, Mardin CY et al (2008) Association of LOXL1 common sequence variants in German and Italian patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci 49:1459–1463

    Article  PubMed  Google Scholar 

  19. Chen H, Chen LJ, Zhang M et al (2010) Ethnicity-based subgroup meta-analysis of the association of LOXL1 polymorphisms with glaucoma. Mol Vis 16:167–177

    PubMed  Google Scholar 

  20. Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367

    Article  PubMed  CAS  Google Scholar 

  21. Challa P (2009) Genetics of pseudoexfoliation syndrome. Curr Opin Ophthalmol 20:88–91

    Article  PubMed  Google Scholar 

  22. Schlötzer-Schrehardt U (2011) Genetics and genomics of pseudoexfoliation syndrome/-glaucoma. Middle East Afr J Ophthalmol 18:30–36

    Article  PubMed  Google Scholar 

  23. Zenkel M, Kruse FE, Jünemann AG et al (2006) Clusterin deficiency in eyes with pseudoexfoliation syndrome may be implicated in the aggregation and deposition of pseudoexfoliative material. Invest Ophthalmol Vis Sci 47:1982–1990

    Article  PubMed  Google Scholar 

  24. Csiszar K (2001) Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 70:1–32

    Article  PubMed  CAS  Google Scholar 

  25. Rodriguez C, Rodriguez-Sinovas A, Martinez-Gonzalez J (2008) Lysyl oxidase as a potential therapeutic target. Drug News Perspect 21:218–224

    Article  PubMed  CAS  Google Scholar 

  26. Schlötzer-Schrehardt U, Pasutto F, Sommer P et al (2008) Genotype-correlated expression of lysyl oxidase-like 1 in ocular tissues of patients with pseudoexfoliation syndrome/glaucoma and normal patients. Am J Pathol 173:1724–1735

    Article  PubMed  Google Scholar 

  27. Schlötzer-Schrehardt U (2009) Molecular pathology of pseudoexfoliation syndrome/glaucoma: new insights from LOXL1 gene associations. Exp Eye Res 88:776–785

    Article  PubMed  Google Scholar 

  28. Zenkel M, Krysta A, Pasutto F et al (2011) Regulation of lysyl oxidase-like 1 (LOXL1) and elastin-related genes by pathogenic factors associated with pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci 52:8488–8495

    Article  PubMed  CAS  Google Scholar 

  29. Burgoyne CF, Downs JC, Bellezza AJ et al (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Progr Ret Eye Res 24:39–73

    Article  Google Scholar 

  30. Schlötzer-Schrehardt U, Hammer CM, Krysta AW et al (2012) LOXL1 deficiency in the lamina cribrosa as candidate susceptibility factor for a pseudoexfoliation-specific risk of glaucoma development. Ophthalmology 119:1832–1843

    Article  PubMed  Google Scholar 

  31. Braunsmann C, Hammer CM, Rheinlaender J et al (2012) Evaluation of lamina cribrosa and peripapillary sclera stiffness in pseudoexfoliation and normal eyes by atomic force microscopy. Invest Ophthalmol Vis Sci 53:2960–2967

    Article  PubMed  Google Scholar 

  32. Koz OG, Turkcu MF, Yarangumeli A et al (2009) Normotensive glaucoma and risk factors in normotensive eyes with pseudoexfoliation syndrome. J Glaucoma 18:684–688

    Article  PubMed  Google Scholar 

  33. Grodum K, Heijl A, Bengtsson B (2005) Risk of glaucoma in ocular hypertension with and without pseudoexfoliation. Ophthalmology 112:386–390

    Article  PubMed  Google Scholar 

  34. Topouzis F, Harris A, Wilson MR et al (2009) Increased likelihood of glaucoma at the same intraocular pressure in subjects with pseudoexfoliation: the Thessaloniki Eye Study. Am J Ophthalmol 148:606–613

    Article  PubMed  Google Scholar 

  35. Heijl A, Bengtsson B, Hyman L et al (2009) Natural history of open-angle glaucoma. Ophthalmology 116:2271–2276

    Article  PubMed  Google Scholar 

  36. Liu X et al (2004) Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet 36:178–182

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Schlötzer-Schrehardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlötzer-Schrehardt, U. Neue pathogenetische Erkenntnisse zum Pseudoexfoliations-Syndrom/Glaukom. Ophthalmologe 109, 944–951 (2012). https://doi.org/10.1007/s00347-012-2531-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-012-2531-1

Schlüsselwörter

Keywords

Navigation