Skip to main content

Klinische Risikofaktoren der Myopieprogression

Clinical risk factors for progressive myopia

Zusammenfassung

Im weltweiten Mittel liegt die Myopiehäufigkeit bei etwa 30%. Myopie wird traditionell eingeteilt in „Schulmyopie“ und „pathologische Myopie“. Weiterhin unterscheidet man fortschreitende Myopie und stationäre Myopie. Es besteht eine ausgeprägte Korrelation zwischen Myopiehäufigkeit und „Verstädterung und Ausbildung“. Risikofaktoren für eine Myopieentwicklung sind Naharbeit, wenig Aufenthalt im Freien, der Bau des Auges sowie genetische Risikofaktoren. Positiv beeinflusst werden kann die Myopieentwicklung durch eine periphere Fokussierung, vermehrte Lichtexposition und künftig evtl. auch pharmakologisch.

Abstract

The average worldwide frequency of myopia is approximately 30 % and is traditionally subdivided into school myopia and pathological myopia. A further distinction is made between progressive myopia and stationary myopia. There is a high correlation between the frequency of myopia and urbanization and training. Risk factors for development of myopia are close-up work, lack of outdoor activity, biometrical variables of the eye and genetic risk factors. Development of myopia can be positively influenced by peripheral focusing, increased exposure to light and in the future possibly pharmacologically.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Anstice NS, Phillips JR (2011) Effect of dual-focus soft contact lens wear on axial myopia progression in children. Ophthalmology 118(6):1152–1161

    PubMed  Article  Google Scholar 

  2. 2.

    Ashby R, Ohlendorf A, Schaeffel F (2009) The effect of ambient illuminance on the development of deprivation myopia in chicks. Invest Ophthalmol Vis Sci 50:5348–5354

    PubMed  Article  Google Scholar 

  3. 3.

    Ashby RS, Schaeffel F (2010) The effect of bright light on lens compensation in chicks. Invest Ophthalmol Vis Sci 51:5247–5253

    PubMed  Article  Google Scholar 

  4. 4.

    Berntsen DA, Sinnott LT, Mutti DO, Zadnik K (2012) A randomized trial using progressive addition lenses to evaluate theories of myopia progression in children with a high lag of accommodation. Invest Ophthalmol Vis Sci 53(2):640–649

    PubMed  Article  Google Scholar 

  5. 5.

    Berntsen DA, Sinnott LT, Mutti DO et al (2011) Accommodative lag and juvenile-onset myopia progression in children wearing refractive correction. Vision Res 51:1039–1046

    PubMed  Article  Google Scholar 

  6. 6.

    Burton TC (1989)The influence of refractive error and lattice degeneration on the incidence of retinal detachment. Trans Am Ophthalmol Soc 87:143–155 (discussion 155–157)

    PubMed  CAS  Google Scholar 

  7. 7.

    Chen YP, Hocking PM, Wang L et al (2011) Selective breeding for susceptibility to myopia reveals a gene-environment interaction. Invest Ophthalmol Vis Sci 52:4003–4011

    PubMed  Article  Google Scholar 

  8. 8.

    Chung K, Mohidin N, O’Leary DJ (2002) Undercorrection of myopia enhances rather than inhibits myopia progression. Vision Res 42:2555–2559

    PubMed  Article  Google Scholar 

  9. 9.

    Curtin BJ (1985) The myopias. Basic science and clinical management. Harper and Row Publihers, Philadelphia, S 338

  10. 10.

    Dirani M, Tong L, Gazzard G et al (2009) Outdoor activity and myopia in Singapore teenage children. Br J Ophthalmol 93(8):997–1000

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Ganesan P, Wildsoet CF (2010) Pharmaceutical intervention for myopia control. Expert Rev Ophthalmol 5:759–787

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Goldschmidt E, Fledelius HC (2011) Clinical features in high myopia. A Danish cohort study of high myopia cases followed from age 14 to age 60. Acta Ophthalmol 89:97–98

    PubMed  Article  Google Scholar 

  13. 13.

    Gwiazda J, Hyman L, Hussein M et al (2003) A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest Ophthalmol Vis Sci 44:1492–1500

    PubMed  Article  Google Scholar 

  14. 14.

    Hammond CJ, Snieder H, Gilbert CE, Spector TD (2001) Genes and environment in refractive error: the twin eye study. Invest Ophthalmol Vis Sci 42(6):1232–1236

    PubMed  CAS  Google Scholar 

  15. 15.

    Hayashi K, Ohno-Matsui K, Shimada N et al (2010) Long-term pattern of progression of myopic maculopathy: a natural history study. Ophthalmology 117:1595–1611

    PubMed  Article  Google Scholar 

  16. 16.

    Hoogerheide J, Rempt F, Hoogenboom WP (1971) Acquired myopia in young pilots. Ophthalmologica 163(4):209–215

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Ikuno Y, Jo Y, Hamasaki T, Tano Y (2010a) Ocular risk factors for choroidal neovascularization in pathologic myopia. Invest Ophthalmol Vis Sci 51:3721–3725

    PubMed  Article  Google Scholar 

  18. 18.

    Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y (2010b) Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 51:2173–2176

    PubMed  Article  Google Scholar 

  19. 19.

    Jacobsen N, Jensen H, Goldschmidt E (2007) Prevalence of myopia in Danish conscripts. Acta Ophthalmol Scand 85:165–167

    PubMed  Article  Google Scholar 

  20. 20.

    Jobke S, Kasten E, Vorwerk C (2008) The prevalence rates of refractive errors among children, adolescents, and adults in Germany. Clin Ophthalmol 2:601–607

    PubMed  Article  Google Scholar 

  21. 21.

    Jones LA, Sinnott LT, Mutti DO et al (2007) Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci 48:3524–3532

    PubMed  Article  Google Scholar 

  22. 22.

    Kempen JH, Mitchell P, Lee KE et al (2004) Eye Diseases Prevalence Research Group. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthalmol 122(4):495–505

    PubMed  Article  Google Scholar 

  23. 23.

    Li XQ, Larsen M, Munch IC (2011) Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Invest Ophthalmol Vis Sci 52(11):8438–8441

    PubMed  Article  Google Scholar 

  24. 24.

    Lin LL, Shih YF, Hsiao CK, Chen CJ (2004) Prevalence of myopia in taiwanese schoolchildren: 1983–2000. Ann Acad Med Singapore 33(1):27–33

    PubMed  CAS  Google Scholar 

  25. 25.

    Liu HH, Xu L, Wang YX et al (2010) Prevalence and progression of myopic retinopathy in Chinese adults: the Beijing Eye Study. Ophthalmology 117(9):1763–1768

    PubMed  Article  Google Scholar 

  26. 26.

    Manny RE, Mitchell GL, Cotter SA et al (2011) Intraocular pressure, ethnicity, and refractive error. Optom Vis Sci 88(12):1445–1453

    PubMed  Google Scholar 

  27. 27.

    McBrien NA, Arumugam B, Metlapally S (2012) The effect of daily transient + 4 D positive lens wear on the inhibition of myopia in the tree shrew. Invest Ophthalmol Vis Sci. 53(3):1593–1601

    Google Scholar 

  28. 28.

    McBrien NA, Jobling AI, Gentle A (2009) Biomechanics of the sclera in myopia: extracellular and cellular factors. Optom Vis Sci 86(1):E23–30 (Review)

    PubMed  Article  Google Scholar 

  29. 29.

    McLeod DS, Grebe R, Bhutto I et al (2009) Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci 50:4982–4991

    PubMed  Article  Google Scholar 

  30. 30.

    Mordechai S, Gradstein L, Pasanen A et al (2011) High myopia caused by a mutation in LEPREL1, encoding prolyl 3-hydroxylase 2. Am J Hum Genet 89(3):438–445

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Morgan I, Rose K (2005) How genetic is school myopia? Prog Retin Eye Res 24:1–38 (Review)

    PubMed  Article  Google Scholar 

  32. 32.

    Mutti DO, Mitchell GL, Sinnott LT et al (2012) Corneal and crystalline lens dimensions before and after myopia onset. Optom Vis Sci 89(3):251–262

    PubMed  Article  Google Scholar 

  33. 33.

    Pan CW, Ramamurthy D, Saw SM (2012) Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol Opt 32(1):3–16 (Review)

    PubMed  Article  Google Scholar 

  34. 34.

    Pärssinen O, Lyyra AL (1993) Myopia and myopic progression among schoolchildren: a three-year follow-up study. Invest Ophthalmol Vis Sci 34(9):2794–2802

    PubMed  Google Scholar 

  35. 35.

    Perkins ES (1979) Morbidity from myopia. Sight Sav Rev 49(1):11–19

    PubMed  CAS  Google Scholar 

  36. 36.

    Phillips JR (2005) Monovision slows juvenile myopia progression unilaterally. Br J Ophthalmol 89:1196–1200

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Rahi JS, Cumberland PM, Peckham CS (2011) Myopia over the lifecourse: prevalence and early life influences in the 1958 British birth cohort. Ophthalmology 118(5):797–804

    PubMed  Article  Google Scholar 

  38. 38.

    Rose KA, Morgan IG, Smith W et al (2008) Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch Ophthalmol 126(4):527–523

    PubMed  Article  Google Scholar 

  39. 39.

    Schaeffel F, Howland HC (1991) Properties of the feedback loops controlling eye growth and refractive state in the chicken. Vision Res 31(4):717–734

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Schaeffel F (2011) Myopia update 2011. Klin Monatsbl Augenheilkd 228(9):754–756

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Schwahn HN, Kaymak H, Schaeffel F (2000) Effects of atropine on refractive development, dopamine release, and slow retinal potentials in the chick. Vis Neurosci 17(2):165–176

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Smith EL III, Hung LF, Huang J et al (2010) Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest Ophthalmol Vis Sci 51(8):3864–3873

    PubMed  Article  Google Scholar 

  43. 43.

    Smith EL III, Hung LF, Huang J (2012) Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Invest Ophthalmol Vis Sci 53(1):421–428

    PubMed  Article  Google Scholar 

  44. 44.

    Smith EL III, Hung LF, Huang J (2009) Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision Res 49(19):2386–2392

    PubMed  Article  Google Scholar 

  45. 45.

    Smith EL III, Ramamirtham R, Qiao-Grider Y et al (2007) Effects of foveal ablation on emmetropization and form-deprivation myopia. Invest Ophthalmol Vis Sci 48(9):3914–3922

    PubMed  Article  Google Scholar 

  46. 46.

    Tabernero J, Ohlendorf A, Fischer MD et al (2011) Peripheral refraction profiles in subjects with low foveal refractive errors. Optom Vis Sci 88:E388–394

    PubMed  Article  Google Scholar 

  47. 47.

    Tokoro T, Kabe S (1965) Treatment of the myopia and the changes in optical components. Report II. Full-or under-correction of myopia by glasses. Nihon Ganka Gakkai Zasshi 69(2):140–144 (Japanese)

    PubMed  CAS  Google Scholar 

  48. 48.

    Vitale S, Sperduto RD, Ferris FL III (2009) Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004. Arch Ophthalmol 127:1632–1639

    PubMed  Article  Google Scholar 

  49. 49.

    Vongphanit J, Mitchell P, Wang JJ (2002) Prevalence and progression of myopic retinopathy in an older population. Ophthalmology 109(4):704–711

    PubMed  Article  Google Scholar 

  50. 50.

    Wallman J, Winawer J (2004) Homeostasis of eye growth and the question of myopia. Neuron. 43(4):447–468 (Review)

    Google Scholar 

  51. 51.

    Wildsoet C, Wallman J (1995) Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Res 35(9):1175–1194

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Young TL (2009) Molecular genetics of human myopia: an update. Optom Vis Sci 86(1):E8–E22

    PubMed  Article  Google Scholar 

  53. 53.

    Zadnik K, Mutti DO, Friedman NE et al (1999) Ocular predictors of the onset of juvenile myopia. Invest Ophthalmol Vis Sci 40(9):1936–1943

    PubMed  CAS  Google Scholar 

  54. 54.

    Zhu X, Winawer JA, Wallman J (2003) Potency of myopic defocus in spectacle lens compensation. Invest Ophthalmol Vis Sci 44(7):2818–2827

    PubMed  Article  Google Scholar 

  55. 55.

    Zylbermann R, Landau D, Berson D (1993) The influence of study habits on myopia in Jewish teenagers. J Pediatr Ophthalmol Strabismus 30(5):319–322

    PubMed  CAS  Google Scholar 

  56. 56.

    Low W, Dirani M, Gazzard G et al (2010) Family history, near work, outdoor activity and myopia in Singapore Chinese preschool children. Optometry Vision Sci 88(3):400 (online available under http://links.lww.com/OPX/A45)

    Google Scholar 

  57. 57.

    Jensen H (1991) Myopia progression in young school children. A prospective study of myopia progression and the effect of a trial with bifocal lenses and beta blocker eye drops. Acta Ophthalmol Suppl 200:1–79

    PubMed  Google Scholar 

  58. 58.

    Gwiazda J, Thorn F, Bauer J, Held R (1993) Myopic children show insufficient accommodative response to blur. Invest Ophthalmol Vis Sci 34(3):690–694

    PubMed  CAS  Google Scholar 

Download references

Danksagung

Ich danke Frau Dr. Andrea Hassenstein, Hamburg, für die Einladung zu diesem Übersichtsartikel, und Frau Dr. Marita Feldkaemper für Kommentare zum Manuskript.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Schaeffel.

Additional information

__ ____

Das Manuskript benutzt eine Anzahl Abstracts, eingereicht für die jährliche Tagung der Association for Research in Vision and Ophthalmology (ARVO) in Ft. Lauderdale vom 6.–10. Mai 2012. Abstractnummern sind direkt im Text zitiert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schaeffel, F. Klinische Risikofaktoren der Myopieprogression. Ophthalmologe 109, 738–748 (2012). https://doi.org/10.1007/s00347-011-2497-4

Download citation

Schlüsselwörter

  • Myopie
  • Myopieprogression
  • Lichtexposition
  • Genetische Risikofaktoren
  • Verstädterung

Keywords

  • Myopia
  • Progression
  • Light exposure
  • Genetic risk factors
  • Urbanization