Skip to main content
Log in

Stereometrische Parameter der Papillentopographie

Vergleich einer simultan-stereoskopischen Non-Mydriasis-Funduskamera (KOWA WX 3D) mit dem Heidelberg Retina Tomograph (HRT III)

Stereometric parameters of the optic disc

Comparison between a simultaneous non-mydriatic stereoscopic fundus camera (KOWA WX 3D) and the Heidelberg scanning laser ophthalmoscope (HRT IIII)

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

In der Verlaufsbeurteilung des präperimetrischen Glaukoms ist die konfokale Laserophthalmoskopie (Heidelberg Retina Tomograph, HRT III) das etablierte morphometrische Standardverfahren. Kameras mit topographischer Dokumentation stellen eine Alternative dar (Kowa nonmyd WX 3D). Ziel dieser retrospektiven Studie war es, die unterschiedlichen Erfassungsmethoden miteinander zu vergleichen.

Material und Methoden

Es wurden 45 Normalaugen, 40 Augen mit Makropapillen und 45 Augen von Patienten mit Glaukom eingeschlossen, bei denen eine HRT-III-Untersuchung und ein Fundusfoto mit der Kowa nonmyd WX 3D am selben Tag erfolgten. Für die statistische Auswertung zur Vergleichbarkeit wurde der Bland-Altman-Plot verwendet (Signifikanzniveau 0,05).

Ergebnisse

Der mittlere Unterschied der Papillenfläche betrug bei den Normalaugen 0,33 mm2, bei der Cup-Disc-Ratio (CDR) waren es 0,02, beim Exkavationsvolumen 0,03 mm3, beim Randsaumvolumen 0,04 mm3 und bei der maximalen Exkavationstiefe 0,28 mm. Alle Unterschiede bis auf das Randsaumvolumen waren statistisch signifikant. Bei Makropapillen wurde ein mittlerer Unterschied der Fläche von 0,03 mm, der CDR von 0,09, des Exkavationsvolumen von 0,14 mm3, des Randsaumvolumens von 0,02 mm3 und der maximalen Exkavationstiefe von 0,28 mm gemessen. Papillenfläche und Randsaumvolumen unterschieden sich nicht signifikant. Bei Glaukomaugen zeigte sich ein mittlerer Unterschied der Papillenfläche von 0,33 mm2, der CDR von 0,09, des Exkavationsvolumens von –0,03 mm3, des Randsaumvolumens von 0,08 mm3 und der maximalen Exkavationstiefe von 0,25 mm. Der mittlere Unterschied der Papillenfläche, des Randsaumvolumens und der CDR waren signifikant. Die mittleren Differenzen der jeweiligen Messungen lagen nicht über der in der Literatur angegebenen Intra- und Interobservervariabilität.

Schlussfolgerung

Trotz teilweise statistisch signifikanter Unterschiede lag die Streuung zwischen den beiden Methoden unter der in der Literatur angegebenen Intra- und Interobservervariabilität. Beide Messmethoden erscheinen vergleichbar.

Abstract

Background

The Heidelberg retina tomograph (HRTIII, Heidelberg Engineering, Germany) in conjunction with the Moorfields regression analysis (MRA) allows monitoring for the progression of early damage to the optic nerve suspicious of early stage glaucoma. The confocal scanning laser ophthalmoscope provides clinicians with an objective and reproducible analysis of morphological parameters of the optic disc. Margins of the optic disc are approximated with a contour line to calculate the stereometric parameters leading to interobserver and intraobserver variability of the MRA. New devices enabling 3D fundus photography might be an alternative to the established HRT. It was the goal of this study to compare the methods by assessing the differences in the topographic parameters obtained by the HRT and the Kowa nonmyd WX 3D (2D/3D non-mydriatic retinal camera, Kowa, Japan) in a representative sample.

Methods

This retrospective study included 45 eyes of normal patients, 40 eyes of patients with macropapillae and 45 eyes of glaucoma patients. Each patient underwent an HRT examination and fundus photography with the Kowa nonmyd WX 3D on the same day. Excluded from the study were eyes with hazy media (cornea, lens, vitreous) or refractive anomalies higher than >4 dpt or astigmatisms >2 dpt. Eyes with previous refractive surgery history or other retinal diseases affecting the optic nerve were also excluded from the study. Bland-Altman plots were used for statistical evaluation. Distribution of parameters was described by 95% confidence intervals (CI).

Results

In normal eyes (n=45) a mean difference in the disc area of 0.33 mm2 was found (95 % confidence interval CI: 0.22–0.43), in the cup-disc ratio (CDR) of 0.02 (95% CI: -0.06–0.14), in the cup volume of 0.03 mm3 (95% CI: -0.04–0.01), in the rim volume of 0.04 mm3 (95%-CI: -0.04–0.13) and in the maximum cup depth of 0.28 mm (95 %-CI: 0.34–0.23). All differences, except for the rim volume, were statistically significant (p<0.05). Patients exhibiting a macropapilla (n=40) displayed a mean difference of 0.03 mm2 (95 % CI: -0.18–0.11) for the disc area, a difference in CDR of 0.09 (95% CI: -0.05–0.13), a difference in maximum cup depth of 0.28 mm (95% CI: 0.23–0.34) and a cup volume of 0.14 mm3 (95%-CI: 0.10–0.18). In addition, there were no significant differences in rim volume (difference: -0.02 mm3, 95% CI: -0.07–0.12) or in disc area. In glaucomatous eyes (n=45), the mean difference for cup area was 0.33 mm2 (95% CI: 0.22–0.43), an area of 0.09 mm2 (95% CI: 0.06–0.13) for the CDR, -0.03 mm3 (95 % CI: -0.09–0.02) for the cup volume and 0.08 mm3 (95% CI: 0.03–0.13) for the rim volume. Mean maximum cup depth difference was 0.25 mm (95% CI: 0.20–0.31). Mean differences in CDR, maximum cup depth and cup area were all statistically significant. The mean differences did not exceed the interobserver and intraobserver variability found in HRT measurements of other studies.

Conclusions

To the best of our knowledge this study is the first comparing optic disc parameters of HRT and 3D photography. Mean differences in stereometric parameters did not exceed the known interobserver and intraobserver variability. The combination of non-mydriatic fundus photography and optic disc analysis is a very attractive and time-saving method. However, before progression of early glaucoma can be monitored or suspected glaucoma can be appraised over longer time periods, further studies are needed to clarify test and retest variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Anderson DR (1989) Glaucoma: the damage caused by pressure. XLVI Edward Jackson memorial lecture. Am J Ophthalmol 108:485–495

    PubMed  CAS  Google Scholar 

  2. Bartz-Schmidt KU, Sündtgen M, Widder RA et al (1995) Limits of two-dimensional planimetry in the follow-up of glaucomatous optic discs. Graefes Arch Clin Exp Ophthalmol 233:284–290

    Article  PubMed  CAS  Google Scholar 

  3. Bartz-Schmidt KU, Weber J, Heimann K (1994) Validity of two-dimensional data obtained with the Heidelberg Retina Tomograph as verified by direct measurements in normal optic nerve heads. Ger J Ophthalmol 3:400–405

    PubMed  CAS  Google Scholar 

  4. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet I:307–310

    Article  Google Scholar 

  5. Bland JM, Altman DG (1995) Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 346:1085–1087

    Article  PubMed  CAS  Google Scholar 

  6. European Galucoma Society (2008) Terminology and guidelines for Glaucoma, 3. Aufl. Dogma, Savona, S 95

  7. Iester M, Mikelberg FS, Courtright P et al (2001) Interobserver variability of optic disk variables measured by confocal scanning laser tomography. Am J Ophthalmol 132:57–62

    Article  PubMed  CAS  Google Scholar 

  8. Jonas JB (1989) Biomorphometrie des Nervus Opticus, 1. Aufl. Enke, Stuttgart, S 1–148

  9. Jonas JB, Mardin CY, Gründler AE (1998) Comparison of measurements of neuroretinal rim area between confocal laser scanning tomography and planimetry of photographs. Br J Ophthalmol 82:362–366

    Article  PubMed  CAS  Google Scholar 

  10. Jonas JB, Nguyen NX, Naumann GO (1989) Optic disc morphometry in simple optic nerve atrophy. Acta Ophthalmol (Copenh) 67:199–203

    Google Scholar 

  11. Jonas JB, Gusek GC, Naumann GO (1988) Optic disc. cup and neuroretinal rim size. Configuration and correlations in normal eyes. Invest Ophthalmol Vis Sci 1151–1158. Erratum in: Invest Ophthalmol Vis Sci (1991) 32:1893. Invest Ophthalmol Vis Sci (1992) 2:474–475

    Google Scholar 

  12. Kalaboukhova L, Fridhammar V, Lindblom B (2006) Glaucoma follow-up by the Heidelberg retina tomograph – new graphical analysis of optic disc topography changes. Graefes Arch Clin Exp Ophthalmol 244:654–662

    Article  PubMed  Google Scholar 

  13. Kass MA, Heuer DK, Higginbotham EJ et al (2002) The Ocular Hypertension Treatment Study. A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713

    PubMed  Google Scholar 

  14. Miglior S, Albé E, Guareschi M et al (2002) Intraobserver and interobserver reproducibility in the evaluation of optic disc stereometric parameters by Heidelberg Retina Tomograph. Ophthalmology 109:1072–1077

    Article  PubMed  Google Scholar 

  15. Müller R, Büttner P (1994) A critical discussion of intraclass correlation coefficients. Stat Med 13:2465–2476

    Article  PubMed  Google Scholar 

  16. Müller-Richter UDA, Ruprecht KW (2001) Bessere Auswertung von HRT-Aufnahmen durch dreidimensionale Darstellung. Ophthalmologe 98:859–863

    Article  PubMed  Google Scholar 

  17. Nakagawa T, Suzuki T, Hayashi Y et al (2008) Quantitative depth analysis of optic nerve head using stereo retinal fundus image pair. J Biomed Opt 13(6):064026

    Article  PubMed  Google Scholar 

  18. Prata TS, Meira-Freitas D, Lima VC et al (2010) Factors affecting the variability of the Heidelberg Retina Tomograph III measurements in newly diagnosed glaucoma patients. Arq Bras Oftalmol 73:354–357

    Article  PubMed  Google Scholar 

  19. Rohrschneider K, Burk RO, Kruse FE, Völcker HE (1994) Reproducibility of the optic nerve head topography with a new laser tomographic scanning device. Ophthalmology 101(6):1044–1049

    PubMed  CAS  Google Scholar 

  20. Scheuerle AF, Schmidt E, Kruse FE, Rohrschneider K (2003) Diagnosis and follow-up in glaucoma patients using the Heidelberg retina tomograph. Ophthalmologe 100:5–12

    Article  PubMed  CAS  Google Scholar 

  21. Schiefer U, Pätzhold J, Wabbels B, Dannheim F (2006) Konventionelle Perimetrie. Ophthalmologe 103:235–256

    Article  PubMed  CAS  Google Scholar 

  22. Sommer A, Katz J, Quigley HA et al (1991) Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109:77–83

    PubMed  CAS  Google Scholar 

  23. Stiefelmeyer S, Neubauer AS, Berninger T et al (2004) The multifocal pattern electroretinogram in glaucoma. Vision Res 44:103–112

    Article  PubMed  Google Scholar 

  24. Tielsch JM, Katz J, Quigley HA et al (1988) Intraobserver and interobserver agreement in measurement of optic disc characteristics. Ophthalmology 95:350–356

    PubMed  CAS  Google Scholar 

  25. Weinreb RN (1998) Assessment of optic disc topography for diagnosing and monitoring glaucoma. Arch Ophthalmol 116:1229–1231

    PubMed  CAS  Google Scholar 

  26. Zangwill LM, Jain S, Racette L et al (2007) The effect of disc size and severity of disease on the diagnostic accuracy of the Heidelberg Retina Tomograph Glaucoma Probability Score. Invest Ophthalmol Vis Sci 48:2653–2660

    Article  PubMed  Google Scholar 

Download references

Danksagung

Wir danken Frau Hofer und dem Team der Fotoabteilung für die nette Zusammenarbeit.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Januschowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Januschowski, K., Blumenstock, G., Rayford II, C. et al. Stereometrische Parameter der Papillentopographie. Ophthalmologe 108, 957–962 (2011). https://doi.org/10.1007/s00347-011-2416-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-011-2416-8

Schlüsselwörter

Keywords

Navigation