Skip to main content
Log in

Einsatz von Nanopartikeln in der Augenheilkunde

Use of nanoparticles in ophthalomology

  • Das therapeutische Prinzip
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die Nanotechnologie, also die Herstellung und der Einsatz von Strukturen und Werkzeugen in der Größenordnung von einigen wenigen bis 100 nm, ist auf dem Weg zu einer Schlüsseltechnologie des 21. Jahrhunderts. Ein wichtiges Element für die Herstellung von Nanopartikeln ist Gold. Goldnanopartikel lassen sich in Größe und Gestalt maßschneidern und chemisch modifizieren. Bei ersten Untersuchungen zeigte sich, dass sie physiologisch unbedenklich sind. Ein potenzielles Anwendungsgebiet ist die neovaskuläre altersbedingte Makuladegeneration. In die sich neu bildenden Blutgefäße eingebrachte Goldnanopartikel geeigneter Dimension können durch einen Laser gezielt erhitzt werden, wodurch diese Blutgefäße selektiv zerstört werden. An kultivierten Endothelzellen konnte dieses Prinzip bereits demonstriert werden.

Abstract

Nanotechnology, the manufacture and use of structures and implements of around a few 100 nm in size, is becoming a key technology of the twenty-first century. An important element for the manufacture of nanoparticles is gold. Gold nanoparticles can be custom made and chemically modified in their size and form. Initial investigations have shown that they are physiologically non-hazardous. A potential application is in neovascular age-related macular degeneration. Gold nanoparticles of suitable dimensions introduced into newly forming blood vessels can be targeted and heated which selectively destroys these blood vessels. This principle has already been demonstrated in cultivated endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Stingl K, Greppmaier U, Wilhelm B, Zrenner E (2010) Subretinale visuelle Implantate. Klin Monatsbl Augenheilkd 227:940–945

    Article  PubMed  CAS  Google Scholar 

  2. Chader GJ, Weiland J, Humayun MS (2009) Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res 175:317–332

    Article  PubMed  Google Scholar 

  3. Taniguchi N (1974) On the basic concept of „Nano-Technology“. Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, S 1974

  4. Drexler KE (1981) Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci USA 78:5275–5278

    Article  PubMed  CAS  Google Scholar 

  5. Caruthers SD, Wickline SA, Lanza GM (2007) Nanotechnological applications in medicine. Curr Opin Biotechnol 18:26–30

    Article  PubMed  CAS  Google Scholar 

  6. van Landeghem FK, Maier-Hauff K, Jordan A et al (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–57

    Article  Google Scholar 

  7. Maier-Hauff K, Ulrich F, Nestler D et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324

    Article  PubMed  Google Scholar 

  8. Nguyen P, Meyyappan M, Yiu SC (2010) Applications of nanobiotechnology in ophthalmology – Part I. Ophthalmic Res 44:1–16

    Article  PubMed  CAS  Google Scholar 

  9. Zarbin MA, Montemagno C, Leary JF, Ritch R (2010) Nanomedicine in ophthalmology: the new frontier. Am J Ophthalmol 150:144–162

    Article  PubMed  CAS  Google Scholar 

  10. Zarbin MA, Montemagno C, Leary JF et al (2010) Nanotechnology in ophthalmology. Can J Ophthalmol 45:457–476

    Article  PubMed  Google Scholar 

  11. Chen J, Patil S, Seal S et al (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150

    Article  PubMed  CAS  Google Scholar 

  12. Chu TC, He Q, Potter DE (2002) Biodegradable calcium phosphate nanoparticles as a new vehicle for delivery of a potential ocular hypotensive agent. J Ocul Pharmacol Ther 18:507–514

    Article  PubMed  CAS  Google Scholar 

  13. Kassem MA, Abdel Rahman AA, Ghorab MM et al (2007) Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm 340:126–133

    Article  PubMed  CAS  Google Scholar 

  14. Zhang R, He R, Qian J et al (2010) Treatment of experimental autoimmune uveoretinitis with intravitreal injection of tacrolimus (FK506) encapsulated in liposomes. Invest Ophthalmol Vis Sci 51:3575–3582

    Article  PubMed  Google Scholar 

  15. Jiang C, Moore MJ, Zhang X et al (2007) Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma. Mol Vis 13:1783–1792

    PubMed  CAS  Google Scholar 

  16. Boas U, Heegaard P (2004) Dendrimers in drug research. Chem Soc Rev 33:43–63

    Article  PubMed  CAS  Google Scholar 

  17. Marano RJ, Toth I, Wimmer N et al (2005) Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Ther 12:1544–1550

    Article  PubMed  CAS  Google Scholar 

  18. Vandamme TF, Brobeck L (2005) Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102:23–38

    Article  PubMed  CAS  Google Scholar 

  19. Ideta R, Tasaka F, Jang WD et al (2005) Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett 5:2426–2431

    Article  PubMed  CAS  Google Scholar 

  20. Tamaki Y (2009) Prospects for nanomedicine in treating age-related macular degeneration. Nanomedicine (Lond) 4:341–352

    Google Scholar 

  21. Pack DW, Hoffman AS, Pun S et al (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593

    Article  PubMed  CAS  Google Scholar 

  22. Prow T, Smith JN, Grebe R et al (2006) Construction, gene delivery, and expression of DNA tethered nanoparticles. Mol Vis 12:606–615

    PubMed  CAS  Google Scholar 

  23. Farjo R, Skaggs J, Quiambao AB et al (2006) Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS ONE 1:e38

    Article  PubMed  Google Scholar 

  24. Cai X, Conley S, Naash M (2008) Nanoparticle applications in ocular gene therapy. Vision Res 48:319–324

    Article  PubMed  CAS  Google Scholar 

  25. Cai X, Nash Z, Conley SM et al (2009) A partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles. PLoS ONE 4:e5290

    Article  PubMed  Google Scholar 

  26. Jani PD, Singh N, Jenkins C et al (2007) Nanoparticles sustain expression of Flt intraceptors in the cornea and inhibit injury-induced corneal angiogenesis. Invest Ophthalmol Vis Sci 48:2030–2036

    Article  PubMed  Google Scholar 

  27. Bejjani RA, BenEzra D, Cohen H et al (2005) Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 11:124–132

    PubMed  CAS  Google Scholar 

  28. Dykman LA, Bogatyrew VA (2007) Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry. Russ Chem Rev 76:181–194

    Article  CAS  Google Scholar 

  29. Huang X, Jain PK, El-Sayed IH et al (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (London) 2:681–693

    Google Scholar 

  30. Murphy CJ, Gole AM, Hunyadi SE et al (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 544–557

  31. Mrksich M, Whitesides GM (1996) Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu Rev Biophys Biomol Struct 25:55–78

    Article  PubMed  CAS  Google Scholar 

  32. Frasconi M, Mazzei F, Ferri T (2010) Protein immobilization at gold-thiol surfaces and potential for biosensing. Anal Bioanal Chem 398:1545–1564

    Article  PubMed  CAS  Google Scholar 

  33. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  PubMed  CAS  Google Scholar 

  34. Connor EE, Mwamuka J, Gole A et al (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  PubMed  CAS  Google Scholar 

  35. Hainfeld JF, Slatkin DN, Focella TM et al (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253

    Article  PubMed  CAS  Google Scholar 

  36. Bakri SJ, Pulido JS, Mukherjee P et al (2008) Absence of histologic retinal toxicity of intravitreal nanogold in a rabbit model. Retina 28:147–149

    Article  PubMed  Google Scholar 

  37. Kim JH, Kim JH, Kim KW et al (2009) Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology 20:505101

    Article  PubMed  Google Scholar 

  38. Anderson RR, Parrish JA (1981) The optics of human skin. J Invest Dermatol 77:13–19

    Article  PubMed  CAS  Google Scholar 

  39. Hirsch LR, Stafford RJ, Bankson JA et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100:13549–13554

    Article  PubMed  CAS  Google Scholar 

  40. El-Sayed IH, Huang X, El-Sayed MA et al (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135

    Article  PubMed  CAS  Google Scholar 

  41. Yang DP, Cui DX (2008) Advances and prospects of gold nanorods. Chem Asian J 3:2010–2022

    Article  PubMed  CAS  Google Scholar 

  42. Cobley CM, Au L, Chen J (2010) Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery. Expert Opin Drug Deliv 7:577–587

    Article  PubMed  CAS  Google Scholar 

  43. Wang J, Sui M, Fan W (2010) Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr Drug Metab 11:129–141

    Article  PubMed  CAS  Google Scholar 

  44. De Jong WH, Hagens WI, Krystek P et al (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919

    Article  Google Scholar 

  45. Aggarwal P, Hall JB, McLeland CB et al (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  PubMed  CAS  Google Scholar 

  46. Niidome T, Yamagata M, Okamoto Y et al (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Contr Release 114:343–347

    Article  CAS  Google Scholar 

  47. Kimura H, Yasukawa T, Tabata Y et al (2001) Drug targeting to choroidal neovascularization. Adv Drug Deliv Rev 52:79–91

    Article  PubMed  CAS  Google Scholar 

  48. Temming K, Schiffelers RM, Molema G et al (2005) RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat 8:381–402

    Article  PubMed  CAS  Google Scholar 

  49. Kim JH, Kim MH, Jo DH et al (2011) The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials 32:1865–1871

    Article  PubMed  CAS  Google Scholar 

  50. Karthikeyan B, Kalishwaralal K, Sheikpranbabu S et al (2010) Gold nanoparticles downregulate VEGF-and IL-1β-induced cell proliferation through Src kinase in retinal pigment epithelial cells. Exp Eye Res 91:769–778

    Article  PubMed  CAS  Google Scholar 

  51. Mukherjee P, Bhattacharya R, Wang P et al (2005) Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 11:3530–3534

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Das Projekt „Selektive Therapie des Augenhintergrundes durch laseraktivierte Nanopartikel“ wurde vom Bundesministerium für Bildung und Forschung (BMBF) gefördert (Förderkennzeichen: 13N9176). An diesem Projekt waren außerdem die Firma Ceramoptec (Bonn) sowie die Arbeitsgruppe Dr. Jürgen Groll (RWTH Aachen) und die Arbeitsgruppe Dr. Gereon Hüttmann (Universität Lübeck) beteiligt.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Eter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, I., Heiduschka, P., Endl, E. et al. Einsatz von Nanopartikeln in der Augenheilkunde. Ophthalmologe 108, 863–868 (2011). https://doi.org/10.1007/s00347-011-2400-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-011-2400-3

Schlüsselwörter

Keywords

Navigation