Skip to main content
Log in

Inzisionen für die biaxiale und koaxiale mikroinzisionale Kataraktchirurgie

Incisions for biaxial and coaxial microincision cataract surgery

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die mikroinzisionale Kataraktchirurgie (MICS) stellt eine neue Stufe in der Entwicklung der Kataraktchirurgie dar. Durch Inzisionen von ≤2 mm kann koaxial in herkömmlicher Weise, aber mit kleinerem Durchmesser (C-MICS), oder biaxial, mittels Separation von Phakotip und Irrigation (B-MICS), eine Phakoemulsifikation einschließlich IOL-Implantation durchgeführt werden. Die Vorteile der MICS im Vergleich zur Standardkleinschnittkataraktchirurgie sind ein geringerer Astigmatismus und weniger korneale Oberflächenveränderungen mit günstigen Auswirkungen auf die optische Qualität und frühe Rehabilitation. In dem Bestreben nach kleineren Schnitten sollte der Wundintegrität, auch im Hinblick auf das Endophthalmitisrisiko, besondere Beachtung zukommen. Bei limitierter kornealer Elastizitätskapazität können eher irreversible Inzisionsdehnungen mit Gewebeverletzungen auftreten. Kleinere Schnitte können nur dann als überlegen angesehen werden, wenn diese tatsächlich ein geringeres Trauma verursachen. Hierzu ist ein optimiertes Verhältnis von Inzisionsgröße und IOL-Implantationsmanipulation bei ausreichender Sicherheit erforderlich. Die MICS bietet eine Plattform neuer Größenmaßstäbe in der Phakoemulsifikation.

Abstract

Microincision cataract surgery (MICS) represents a new level in the development of cataract surgery. Phacoemulsification with intraocular lens (IOL) implantation via incisions of ≤2 mm may be performed by the coaxial approach, such as conventional phacoemulsification but with a smaller diameter of the phaco tip (C-MICS), or by the biaxial approach, with separation of the phaco tip and irrigation (B-MICS). Compared with standard small-incision cataract surgery, the advantages of MICS are less corneal astigmatism and fewer corneal surface irregularities, with favorable implications for visual quality and early rehabilitation. In the effort toward smaller incisions, special interest should be given to wound integrity, especially regarding the risk of endophthalmitis. With limited corneal elastic capacity, irreversible expansion of the incision with tissue laceration may occur. Smaller incisions are superior only if they cause less trauma. This requires an optimized relationship between incision size and manipulation during IOL implantation as well as attention to safety issues. MICS offers a platform for new benchmarks in phacoemulsification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Agarwal A, Agarwal A, Agarwal S et al (2001) Phakonit: Phacoemulsification through a 0.9 mm corneal incision. J Cataract Refract Surg 21:1548–1552

    Article  Google Scholar 

  2. Alio J, Rodriguez-Prats JL, Galal A, Ramzy M (2005) Outcome of microincision cataract surgery versus coaxial phacoemulsification. Ophthalmology 112:1197–2003

    Google Scholar 

  3. Berdahl J, De Stefano J, Kim T (2007) Corneal wound architecture and integrity after phacoemulsification. J Cataract Refract Surg 33:510–515

    Article  PubMed  Google Scholar 

  4. Drews RC (2000) Five year study of astigmatic stability after cataract surgery with intraocular lens implantation: comparison of wound sizes. J Cataract Refract Surg 26:250–253

    Article  CAS  PubMed  Google Scholar 

  5. Elkady, B, Alio JL, Ortiz D, Montalban R (2008) Corneal aberrations after microincision cataract surgery. J Cataract Refract Surg 34:40–45

    Article  PubMed  Google Scholar 

  6. Elkaday B, Pinero D, Alio JL (2009) Microincision cataract surgery versus microcoaxial phacoemulsification. J Cataract Refract Surg 35:466–474

    Article  Google Scholar 

  7. Ernest P, Lavery K, Kiessling L (1994) Relative strength of scleral corneal and clear cornea incisions constructed in cadaver eyes. J Cataract Refract Surg 20:626–629

    CAS  PubMed  Google Scholar 

  8. Ernest P, Neuhann T (1996) Posterior limbal incision. J Cataract Refract Surg 22:78–84

    CAS  PubMed  Google Scholar 

  9. Etter J, Berdahl J, Bokkan J et al (2009) Corneal wound integrity and architecture after phacoemulsification: comparative analysis of corneal wounds created by silicon and steel blades. J Cataract Refract Surg 35:1313–1314

    Article  PubMed  Google Scholar 

  10. Guirao A, Tejedor J, Artal P (2004) Corneal aberrations before and after small-incision cataract surgery. Invest Ophthalmol Vis Sci 45(12):4312–4219

    Article  PubMed  Google Scholar 

  11. Hayashi K, Yoshida M, Hayashi H (2009) Postoperative corneal shape changes: microincision versus small-incision coaxial surgery. J Cataract Refract Surg 35:233–239

    Article  PubMed  Google Scholar 

  12. Jacobi FK, Dick HB, Bohle RM (1998) Histological and ultrastructural study of corneal tunnel incisions using diamond and steel keratomes. J Cataract Refract Surg 24:498–502

    CAS  PubMed  Google Scholar 

  13. Johar et al (2008) Histomorphological and immunofluorescence evaluation of bimanual and coaxial phacoemulsification incisions in rabbits. J Cataract Refract Surg 43:670–676

    Article  Google Scholar 

  14. Kimura K, Tanaka T, Koshika S, Usui M (2008) Effect of gauge thickness on wound-width measurements in microincision cataract surgery. J Cataract Refract Surg 34:1133–1135

    Article  PubMed  Google Scholar 

  15. Kurz S, Krummenauer F, Gabriel P et al (2006) Biaxial microincision versus coaxial small-incision clear cornea cataract surgery. Ophthalmology 113:1818–1826

    Article  PubMed  Google Scholar 

  16. Kohnen T, Dick B, Jacobi KW (1995) Comparison of the induced astigmatism after temporal clear corneal tunnel incisions of different sizes. J Cataract Refract Surg 21:417–424

    CAS  PubMed  Google Scholar 

  17. Kohnen T (1997) A new caliper for small incision cataract surgery. J Cataract Refract Surg 23:1298–1300

    CAS  PubMed  Google Scholar 

  18. Kohnen T, Lambert RJ, Koch DD (1997) Incision sizes for foldable intraocular lenses. Ophthalmology 104:1277–1286

    CAS  PubMed  Google Scholar 

  19. Kohnen T, Koch DD (1998) Experimental and clinical evaluation of incision size and shape following forceps and injector implantation of a three-piece high-refractive-index silicone intraocular lens. Graefes Arch Clin Exp Ophthalmol 236:922–928

    Article  CAS  PubMed  Google Scholar 

  20. Kohnen T, Kasper T (2005) Incision size before and after implantation of 6-mm foldable intraocular lenses using monarch and unfolder injector systems. Ophthalmology 112:58–66

    Article  PubMed  Google Scholar 

  21. Kohnen T, Klaproth O (2008) Incision sizes before and after implantation of SN60WF intraocular lenses using the monarch injector system with C and D cartridges. J Cataract Refract Surg 34:1748–1753

    Article  PubMed  Google Scholar 

  22. Long DA, Monica LM (1996) A prospective evaluation of corneal curvature changes with 3.0–to 3.5 mm corneal tunnel phacoemulsification. Ophthalmology 103:226–232

    CAS  PubMed  Google Scholar 

  23. Mamalis N (2000) Incision width after phacoemulsification with foldable intraocular lens. J Cataract Refract Surg 26:237–241

    Article  CAS  PubMed  Google Scholar 

  24. Marcos S, Rosales P, Llorente L, Jimenez-Alfaro I (2007) Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses. J Cataract Refract Surg 33:217–226

    Article  PubMed  Google Scholar 

  25. Masket S, Belani S (2007) Proper wound construction to prevent short-term ocular hypotony after clear cornea incision cataract surgery. J Cataract Refract Surg 33:3835–3886

    Google Scholar 

  26. May W, Castro-Combs J, Camacho W et al (2008) Analysis of clear cornea incision integrity in an ex vivo model. J Cataract Refract Surg 34:1013–1018

    Article  PubMed  Google Scholar 

  27. McDonnell, Taban M, Sarayba M et al (2003) Dynamic morphology of clear cornea cataract incisions. Ophthalmology 110:2342–2348

    Article  PubMed  Google Scholar 

  28. Moon SC, Mohamed T, Fine H (2007) Comparison of surgically induced astigmatisms after clear cornea incisions of different sizes. Korean J Ophthalmol 21:1–5

    Article  PubMed  Google Scholar 

  29. Radner W, Menapace R, Zehetmayer M et al (1998) Ultrastructure of clear corneal incision. Part II: corneal trauma after lens implantation with microstaar injector system. J Cataract Refract Surg 24:493–497

    CAS  PubMed  Google Scholar 

  30. Rainer G, Menapace R, Vass C et al (1999) Corneal shape changes after temporal and superolateral 3.0 mm clear corneal incisions. J Cataract Refract Surg 25:1121–1126

    Article  CAS  PubMed  Google Scholar 

  31. Rainer G, Menapace R, Vass C et al (1997) Surgically induced astigmatism following a 4.0 mm sclerocorneal valve incision. J Cataract Refract Surg 23:358–364

    CAS  PubMed  Google Scholar 

  32. Steinert RF, Deacon J (1996) Enlargement of incision width during phacoemulsification and folded intraocular lens implant surgery. Ophthalmology 103:220–225

    CAS  PubMed  Google Scholar 

  33. Taban M, Sarayba MA, Ignacio TS et al (2005) Ingress of India ink into the anterior chamber through sutureless clear corneal cataract wounds. Arch Ophthalmol 123:643–648

    Article  PubMed  Google Scholar 

  34. Tam D, Vagefi R, Naseri A (2007) The clear cornea tongue: A mechanism for wound incompetence after phacoemulsification. Am J Ophthalmol 143:526–528

    Article  PubMed  Google Scholar 

  35. Tejedor J, Perez-Rodriguez JA (2009) Astigmatic change induced by 2.8-mm corneal incisions for cataract surgery. Invest Ophthalmol Vis Sci 50:989–994

    Article  PubMed  Google Scholar 

  36. Tong N, He JC, Lu F et al (2008) Changes in corneal wavefront aberrations in microincision cataract surgery. J Cataract Refract Surg 34:2085–2090

    Article  PubMed  Google Scholar 

  37. Torres LF, Saez-Espinola F, Colina JM et al (2006) In vivo architectural analysis of 3,2 mm clear corneal incisions for phacoemulsification using optical coherence tomography. J Cataract Refract Surg 32:1820–1826

    Article  PubMed  Google Scholar 

  38. Tsuneoka H, Shiba T, Takahashi Y (2001) Feasibility of ultrasound cataract surgery with a 1.4 mm incision. J Cataract Refract Surg 27:934–940

    Article  CAS  PubMed  Google Scholar 

  39. Tsuneoka H, Shiba T, Takahashi Y (2001) Ultrasound phacoemulsification using a 1.4 mm incision: clinical results. J Cataract Refract Surg 28:81–86

    Article  Google Scholar 

  40. Van Meter WS, Breen C, Hainsworth DP, Geissler R (1990) Scanning electron microscopy of corneal incisions using steel, diamond and sapphire blades. Ophthal plast Reconstr Surg 21:475–480

    Google Scholar 

  41. Vasavada A, Praveen MR, Pandita D et al (2007) Effect of stromal hydration of clear corneal incisions: quantifying ingress of trypan blue into the anterior chamber after phacoemulsification. J Cataract Refract Surg 33:623–627

    Article  PubMed  Google Scholar 

  42. Vass C, Menapace R, Rainer G (1997) Corneal topographic changes after frown and straight sclerocorneal incisions. J Cataract Refract Surg 23:913–922

    CAS  PubMed  Google Scholar 

  43. Vass C, Menapace R, Rainer G et al (1998) Comparative study of corneal topographic changes after 3.0 mm beveled and hinged clear corneal incisions. J Cataract Refract Surg 24:1498–1504

    CAS  PubMed  Google Scholar 

  44. Wenzel M, Pham D-T, Scharrer A et al (2009) Ambulante Intraokularchirurgie – Umfrage 2008 von BDOC, BVA und der DGII Ophthalmochirurgie 21:199–211

  45. Yao K, Tang X, Ye P (2006) Corneal astigmatism, higher order aberrations, and optical quality after cataract surgery: microincision versus small incision. J Refract Surg 22:1079–1082

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M., Kohnen, T. Inzisionen für die biaxiale und koaxiale mikroinzisionale Kataraktchirurgie. Ophthalmologe 107, 108–115 (2010). https://doi.org/10.1007/s00347-009-1980-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-009-1980-7

Schlüsselwörter

Keywords

Navigation