Skip to main content
Log in

Protektive Wirkung Blaulicht absorbierender IOLs auf das menschliche retinale Pigmentepithel

Protective effect of blue light-absorbing IOLs on the human retinal pigment epithelium

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Kumulative Lichtexposition wird für die Entstehung der altersabhängige Makuladegeneration (AMD) mitverantwortlich gemacht. Um die Netzhaut vor den schädlichen Einflüssen des blauen Lichts zu schützen, werden seit geraumer Zeit Blaulicht absorbierende Intraokularlinsen (IOLs) eingesetzt. Diese Studie vergleicht mögliche zytoprotektive Effekte der Blaulicht absorbierenden SN60AT IOL (ALCON) mit der ungefärbten, UV-Licht absorbierenden SA60AT IOL (ALCON) auf das humane retinale Pigmentepithel (RPE).

Methoden

Kulturen primärer humaner RPE Zellen wurden mit weißem Licht bestrahlt, das entweder durch eine SN60AT IOL oder eine SA60AT IOL gefiltert wurde. Nach einer Bestrahlungszeit von 15–60 min wurden Vitalität, Induktion von Apoptose und die Expression des „vascular endothelial growth factor A“ (VEGF-A) sowie des antiapoptotisch wirksamen Proteins XIAP auf zellulärer Ebene bestimmt (RT-PCR/Western Blot/ELISA)

Ergebnisse

Die ungefilterte Bestrahlung der RPE-Zellen mit weißem Licht führte zu einer bestrahlungszeitabhängigen Abnahme der Vitalität und der Expression von XIAP sowie zu einer Induktion von Apoptose und Bildung von VEGF-A. Diese phototoxische Zellschädigung wurde durch beide untersuchten IOLs signifikant reduziert. Die Zellschädigung durch Bestrahlung mit Licht nach Blaulichtfilterung mit der SN60AT IOL war signifikant geringer als mit der SA60AT IOL.

Schlussfolgerung

Sowohl UV-filternde als auch Blaulicht absorbierende IOLs reduzieren phototoxische RPE-Schädigung. Die Blaulicht absorbierende SN60AT IOL führte in unseren Versuchen zu einer zusätzlichen Reduktion der Zellschädigung. Die Ergebnisse deuten darauf hin, dass Blaulicht absorbierende IOLs auch im klinischen Gebrauch eine photoprotektive Wirksamkeit auf Netzhautebene besitzen.

Abstract

Methods

Primary human RPE cells were exposed to white light and either a SN60AT or SA60AT IOL was placed in the light beam. After 15–60 min of irradiation, viability, induction of apoptosis and cell death were determined in primary human RPE cells. Expression of vascular endothelial growth factor A (VEGF-A) and the anti-apoptotic XIAP protein and their mRNA were determined by RT-PCR, Western blot analysis and ELISA.

Results

Light exposure decreased cell viability depending on the duration of irradiation. Light-induced cell death and apoptosis as well as decrease of XIAP expression and cellular viability were significantly reduced by both the SN60AT and SA60AT IOL. In addition, these protective effects regarding light-induced cell damage were significantly stronger in the presence of the blue light-filtering SN60AT IOL compared to the SA60AT IOL.

Conclusion

Both UV-filtering and blue light-absorbing IOLs reduce light-induced RPE damage. The blue light-absorbing IOL further reduced damage compared to the conventional IOL, which supports the hypothesis of possibly also preventing retinal damage in clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Algvere PV, Marshall J, Seregard S (2006) Age-related maculopathy and the impact of blue light hazard. Acta Ophthalmol Scand 84:4–15

    Article  CAS  PubMed  Google Scholar 

  2. Augustin AJ (2008) The physiology of scotopic vision, contrast vision, color vision, and circadian rhythmicity: Can These Parameters be Influenced by Blue-Light-Filter Lenses? Retina

  3. Barishak YR (1960) In vitro behaviour of the pigmented cells of the retina and uvea of the adult human eye. Acta Ophthalmol (Copenh) 38:339–346

    Google Scholar 

  4. Braunstein RE, Sparrow JR (2005) A blue-blocking intraocular lens should be used in cataract surgery. Arch Ophthalmol 123:547–549

    Article  PubMed  Google Scholar 

  5. Congdon N, O’Colmain B, Klaver CC et al (2004) Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 122:477–485

    Article  PubMed  Google Scholar 

  6. Congdon N, Vingerling JR, Klein BE et al (2004) Prevalence of cataract and pseudophakia/aphakia among adults in the United States. Arch Ophthalmol 122:487–494

    Article  PubMed  Google Scholar 

  7. Cruickshanks KJ, Klein R, Klein BE, Nondahl DM (2001) Sunlight and the 5-year incidence of early age-related maculopathy: the beaver dam eye study. Arch Ophthalmol 119:246–250

    CAS  PubMed  Google Scholar 

  8. Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300–304

    Article  CAS  PubMed  Google Scholar 

  9. Ernest PH (2004) Light-transmission-spectrum comparison of foldable intraocular lenses. J Cataract Refract Surg 30:1755–1758

    Article  PubMed  Google Scholar 

  10. Ferris FL 3rd, Fine SL, Hyman L (1984) Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 102:1640–1642

    PubMed  Google Scholar 

  11. Flood MT, Gouras P, Kjeldbye H (1980) Growth characteristics and ultrastructure of human retinal pigment epithelium in vitro. Invest Ophthalmol Vis Sci 19:1309–1320

    CAS  PubMed  Google Scholar 

  12. Ham WT Jr, Mueller HA, Ruffolo JJ Jr et al (1984) Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Curr Eye Res 3:165–174

    Article  CAS  PubMed  Google Scholar 

  13. Hawkins BS, Bird A, Klein R, West SK (1999) Epidemiology of age-related macular degeneration. Mol Vis 5:26

    CAS  PubMed  Google Scholar 

  14. Holcik M, Gibson H, Korneluk RG (2001) XIAP: apoptotic brake and promising therapeutic target. Apoptosis 6:253–261

    Article  CAS  PubMed  Google Scholar 

  15. Holz FG, Pauleikhoff D, Klein R, Bird AC (2004) Pathogenesis of lesions in late age-related macular disease. Am J Ophthalmol 137:504–510

    Article  PubMed  Google Scholar 

  16. Katz ML (2002) Potential role of retinal pigment epithelial lipofuscin accumulation in age-related macular degeneration. Arch Gerontol Geriatr 34:359–370

    Article  CAS  PubMed  Google Scholar 

  17. Kernt M, Neubauer AS, Liegl R et al (2009) Cytoprotective effects of a blue light-filtering intraocular lens on human retinal pigment epithelium by reducing phototoxic effects on vascular endothelial growth factor-alpha, Bax and Bcl-2 expression. J Cataract Refract Surg 35:354–362

    Article  PubMed  Google Scholar 

  18. Klein R, Peto T, Bird A, Vannewkirk MR (2004) The epidemiology of age-related macular degeneration. Am J Ophthalmol 137:486–495

    Article  PubMed  Google Scholar 

  19. Knudtson MD, Klein R, Klein BE et al (2004) Location of lesions associated with age-related maculopathy over a 10-year period: the Beaver Dam Eye Study. Invest Ophthalmol Vis Sci 45:2135–2142

    Article  PubMed  Google Scholar 

  20. Lawrence HM, Reynolds TR (1989) Erythropsial phototoxicity associated with nonultraviolet-filtering intraocular lenses. J Cataract Refract Surg 15:569–572

    CAS  PubMed  Google Scholar 

  21. Leonard KC, Petrin D, Coupland SG et al (2007) XIAP protection of photoreceptors in animal models of retinitis pigmentosa. PLoS ONE 2:e314

    Article  PubMed  Google Scholar 

  22. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  23. Mainster MA, Sparrow JR (2003) How much blue light should an IOL transmit? Br J Ophthalmol 87:1523–1529

    Article  CAS  PubMed  Google Scholar 

  24. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  25. Nilsson SE, Sundelin SP, Wihlmark U, Brunk UT (2003) Aging of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage. Doc Ophthalmol 106:13–16

    Article  PubMed  Google Scholar 

  26. Norren DV, Vos JJ (1974) Spectral transmission of the human ocular media. Vision Res 14:1237–1244

    Article  CAS  PubMed  Google Scholar 

  27. Petrin D, Baker A, Coupland SG et al (2003) Structural and functional protection of photoreceptors from MNU-induced retinal degeneration by the X-linked inhibitor of apoptosis. Invest Ophthalmol Vis Sci 44:2757–2763

    Article  PubMed  Google Scholar 

  28. Resnikoff S, Pascolini D, Etya’ale D et al (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82:844–851

    PubMed  Google Scholar 

  29. Rezai KA, Gasyna E, Seagle BL et al (2008) AcrySof Natural filter decreases blue light-induced apoptosis in human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 246:671–676

    Article  PubMed  Google Scholar 

  30. Rosenfeld PJ, Fung AE, Puliafito CA (2005) Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for macular edema from central retinal vein occlusion. Ophthalmic Surg Lasers Imaging 36:336–339

    PubMed  Google Scholar 

  31. Sparrow JR, Cai B (2001) Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci 42:1356–1362

    CAS  PubMed  Google Scholar 

  32. Tomany SC, Cruickshanks KJ, Klein R et al (2004) Sunlight and the 10-year incidence of age-related maculopathy: the Beaver Dam Eye Study. Arch Ophthalmol 122:750–757

    Article  PubMed  Google Scholar 

  33. van den Berg TJ, Spekreijse H (1997) Near infrared light absorption in the human eye media. Vision Res 37:249–253

    Article  Google Scholar 

  34. Weale RA (1988) Age and the transmittance of the human crystalline lens. J Physiol 395:577–587

    CAS  PubMed  Google Scholar 

  35. Welge-Lussen U, May CA, Eichhorn M et al (1999) AlphaB-crystallin in the trabecular meshwork is inducible by transforming growth factor-beta. Invest Ophthalmol Vis Sci 40:2235–2241

    CAS  PubMed  Google Scholar 

  36. Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO (2003) Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 22:1–29

    Article  CAS  PubMed  Google Scholar 

  37. Yanagi Y, Inoue Y, Iriyama A, Jang WD (2006) Effects of yellow intraocular lenses on light-induced upregulation of vascular endothelial growth factor. J Cataract Refract Surg 32:1540–1544

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kernt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kernt, M., Hirneiss, C., Neubauer, A. et al. Protektive Wirkung Blaulicht absorbierender IOLs auf das menschliche retinale Pigmentepithel. Ophthalmologe 107, 150–157 (2010). https://doi.org/10.1007/s00347-009-1945-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-009-1945-x

Schlüsselwörter

Keywords

Navigation