Skip to main content
Log in

Genetische Ursachen erblicher Erkrankungen der Zapfen-Photorezeptoren

Genetic causes of hereditary cone and cone-rod dystrophies

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Zapfen- und Zapfen-Stäbchen-Dystrophien gehören zu den sowohl genetisch als auch phänotypisch sehr heterogenen erblichen Netzhauterkrankungen. Der Beitrag soll einen Überblick über den aktuellen Wissenstand der beteiligten Gene für diese seltenen Erkrankungen, die vornehmlich die Zapfen-Photorezeptoren betreffen, geben.

Methode

Literatur- und Datenbank-Recherche sowie Zusammenfassung eigener molekulargenetischer Untersuchungen bei Patienten mit Achromatopsie, Blauzapfen-Monochromasie, Zapfen- und Zapfen-Stäbchen-Dystrophie.

Ergebnis

Zapfen- und Zapfen-Stäbchen-Dystrophien können aufgrund des klinischen Verlaufs in stationäre und progressive sowie anhand des zugrunde liegenden Erbgangs in autosomal-rezessive, autosomal-dominante und X-chromosomale Formen unterschieden werden. Bis heute konnten 7 Gene für autosomal-rezessiv erbliche Zapfen- und Zapfen-Stäbchen-Dystrophien, 9 für autosomal-dominant erbliche Formen und 2 Gene auf dem X-Chromosom identifiziert werden. Kopplungsgenetische Kartierungen haben außerdem Hinweise auf jeweils 2 weitere Loci für Zapfen- und Zapfen-Stäbchen-Dystrophien mit autosomal-dominantem, autosomal-rezessivem und X-chromosomalem Erbgang ergeben.

Schlussfolgerung

Verlässliche Daten zu Prävalenz und Inzidenz erblicher Zapfen- und Zapfen-Stäbchen-Dystrophien sowie der beteiligten Gene und Mutationen liegen nur in Einzelfällen vor. Mit den heute bekannten Genen lässt sich nur bei einem Teil der Patienten die genetische Ursache ergründen.

Abstract

Background

Cone and cone-rod dystrophies belong to the genetically and phenotypically very heterogeneous group of retinal degenerations. This article aims to review the current knowledge of genes and mutations involved in these rare disorders that primarily affect the cone photoreceptor system.

Methods

Literature and database search and summary of our own molecular genetic analyses in patients affected by achromatopsia, blue cone monochromatism, and cone and cone-rod dystrophy.

Results

Cone and cone-rod dystrophies can be divided according to the disease course into stationary and progressive disorders or by the genetic mode of inheritance into autosomal-recessive, autosomal-dominant, and X-linked traits. To date, seven genes for autosomal-recessive and nine for autosomal-dominant inherited forms of cone and cone-rod dystrophy, as well as two underlying genes on the X chromosome, have been identified. Linkage analyses imply two additional loci for autosomal-dominant, autosomal-recessive, and X-linked forms of these disorders.

Conclusion

Reliable data on the prevalence and incidence of hereditary cone and cone-rod dystrophies and the underlying genetic defects exist only for distinct clinical and genetic entities. Analysis of the known genes results in identification of the genetic defect and mutation in only a subset of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Abid A, Ismail M, Mehdi SQ et al (2006) Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J Med Genet 43:378–381

    Article  PubMed  CAS  Google Scholar 

  2. Aligianis IA, Forshew T, Johnson S et al (2002) Mapping of a novel locus for achromatopsia (ACHM4) to 1p and identification of a germline mutation in the a subunit of cone transducin (GNAT2). J Med Genet 39:656–660

    Article  PubMed  CAS  Google Scholar 

  3. Allikmets R, Singh N, Sun H et al (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–426

    Article  PubMed  CAS  Google Scholar 

  4. Boon CJ, den Hollander AI, Hoyng CB et al (2008) The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog Retin Eye Res 27:213–235

    Article  PubMed  CAS  Google Scholar 

  5. Demirci FY, Rigatti BW, Wen G et al (2002) X-linked cone-rod dystrophy (locus COD1): identification of mutations in RPGR exon ORF15. Am J Hum Genet 70:1049–1053

    Article  PubMed  CAS  Google Scholar 

  6. Downes SM, Holder GE, Fitzke FW et al (2001) Autosomal dominant cone and cone-rod dystrophy with mutations in the guanylate cyclase activator 1A gene-encoding guanylate cyclase activating protein-1. Arch Ophthalmol 119:96–105

    PubMed  CAS  Google Scholar 

  7. Francois J (1961) Heredity in ophthalmology. CV Mosby, St. Louis

  8. Freund CL, Gregory-Evans CY, Furukawa T et al (1997) Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 91:543–553

    Article  PubMed  CAS  Google Scholar 

  9. Hameed A, Abid A, Aziz A et al (2003) Evidence of RPGRIP1 gene mutations associated with recessive cone-rod dystrophy. J Med Genet 40:616–619

    Article  PubMed  CAS  Google Scholar 

  10. Hamel CP (2007) Cone rod dystrophies. Orphanet J Rare Dis 2:7

    Article  PubMed  Google Scholar 

  11. Johnson S, Halford S, Morris AG et al (2003) Genomic organisation and alternative splicing of human RIM1, a gene implicated in autosomal dominant cone-rod dystrophy (CORD7). Genomics 81:304–314

    Article  PubMed  CAS  Google Scholar 

  12. Kelsell RE, Gregory-Evans K, Payne AM et al (1998) Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 7:1179–1184

    Article  PubMed  CAS  Google Scholar 

  13. Kitiratschky VB, Grau T, Bernd A et al (2008) ABCA4 gene analysis in patients with autosomal recessive cone and cone rod dystrophies. Eur J Hum Genet 16:812–819

    Article  PubMed  CAS  Google Scholar 

  14. Kitiratschky VB, Wilke R, Renner AB et al (2008) Mutation analysis identifies GUCY2D as the major gene responsible for autosomal dominant progressive cone degeneration. Invest Ophthalmol Vis Sci 49:5015–5023

    Article  PubMed  Google Scholar 

  15. Klevering BJ, Deutman AF, Maugeri A et al (2005) The spectrum of retinal phenotypes caused by mutations in the ABCA4 gene. Graefes Arch Clin Exp Ophthalmol 243:90–100

    Article  PubMed  CAS  Google Scholar 

  16. Kobayashi A, Higashide T, Hamasaki D et al (2000) HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model. Invest Ophthalmol Vis Sci 41:3268–3277

    PubMed  CAS  Google Scholar 

  17. Kohl S, Baumann B, Broghammer M et al (2000) Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum Mol Genet 9:2107–2116

    Article  PubMed  CAS  Google Scholar 

  18. Kohl S, Baumann B, Rosenberg T et al (2002) Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia. Am J Hum Genet 71:422–425

    Article  PubMed  CAS  Google Scholar 

  19. Kohl S, Marx T, Giddings I et al (1998) Total colourblindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nat Genet 19:257–259

    Article  PubMed  CAS  Google Scholar 

  20. Köhn L, Kadzhaev K, Burstedt MS et al (2007) Mutation in the PYK2-binding domain of PITPNM3 causes autosomal dominant cone dystrophy (CORD5) in two Swedish families. Eur J Hum Genet 15:664–671

    Article  PubMed  Google Scholar 

  21. Maugeri A, Klevering BJ, Rohrschneider K et al (2000) Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. Am J Hum Genet 67:960–966

    Article  PubMed  CAS  Google Scholar 

  22. Michaelides M, Aligianis IA, Ainsworth JR et al (2004) Progressive cone dystrophy associated with mutation in CNGB3. Invest Ophthalmol Vis Sci 45:1975–1982

    Article  PubMed  Google Scholar 

  23. Michaelides M, Aligianis IA, Holder GE et al (2003) Cone dystrophy phenotype associated with a frameshift mutation (M280fsX291) in the alpha-subunit of cone specific transducin (GNAT2). Br J Ophthalmol 87:1317–1320

    Article  PubMed  CAS  Google Scholar 

  24. Michaelides M, Wilkie SE, Jenkins S et al (2005) Mutation in the gene GUCA1A, encoding guanylate cyclase-activating protein 1, causes cone, cone-rod and macular dystrophy. Ophthalmology 112:1442–1447

    Article  PubMed  Google Scholar 

  25. Nathans J, Davenport CM, Maumenee IH et al (1989) Molecular genetics of human blue cone monochromacy. Science 245:831–838

    Article  PubMed  CAS  Google Scholar 

  26. Payne AM, Downes SM, Bessant DA et al (1998) A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet 7:273–277

    Article  PubMed  CAS  Google Scholar 

  27. Payne AM, Morris AG, Downes SM et al (2001) Clustering and frequency of mutations in the retinal guanylate cyclase (GUCY2D) gene in patients with dominant cone-rod dystrophies. J Med Genet 38:611–614

    Article  PubMed  CAS  Google Scholar 

  28. Perrault I, Rozet JM, Gerber S et al (1998) A retGC-1 mutation in autosomal dominant cone-rod dystrophy. Am J Hum Genet 63:651–654

    Article  PubMed  CAS  Google Scholar 

  29. Rosenberg T, Baumann B, Kohl S et al (2004) Variant phenotypes of incomplete achromatopsia in two cousins with GNAT2 gene mutations. Invest Ophthalmol Vis Sci 45:4256–4262

    Article  PubMed  Google Scholar 

  30. Sharpe LT, Stockman A, Jagle H et al (1999) Cone photopigments, color vision and color blindness. In: Gegenfurtner K, Sharpe LT (eds) Color Vision: from genes to perception. Cambridge University Cambridge, pp 3–52

  31. Sohocki MM, Perrault I, Leroy BP et al (2000) Prevalence of AIPL1 mutations in inherited retinal degenerative disease. Mol Genet Metab 70:142–150

    Article  PubMed  CAS  Google Scholar 

  32. Sundin OH, Yang JM, Li Y et al (2000) Genetic basis of total colourblindness among the Pingelapese islanders. Nat Genet 25:289–293

    Article  PubMed  CAS  Google Scholar 

  33. Swain PK, Chen S, Wang QL et al (1997) Mutations in the cone-rod homeobox gene are associated with the cone-rod dystrophy photoreceptor degeneration. Neuron 19:1329–1336

    Article  PubMed  CAS  Google Scholar 

  34. Wissinger B, Dangel S, Jägle H et al (2008) Cone dystrophy with supernormal rod response is strictly associated with mutations in KCNV2. Invest Ophthalmol Vis Sci 49:751–757

    Article  PubMed  Google Scholar 

  35. Wissinger B, Gamer D, Jagle H et al (2001) CNGA3 mutations in hereditary cone photoreceptor disorders. Am J Hum Genet 69:722–737

    Article  PubMed  CAS  Google Scholar 

  36. Wissinger B (1998) Neue Erkenntnisse zur genetischen Ursache der kompletten Achromatopsie (kompletten Farbenblindheit). Z Prakt Augenheilkd 19:467–472

    Google Scholar 

  37. Wiszniewski W, Lewis RA, Lupski JR (2007) Achromatopsia: the CNGB3 p.T383fsX mutation results from a founder effect and is responsible for the visual phenotype in the original report of uniparental disomy 14. Hum Genet 121:433–439

    Article  PubMed  CAS  Google Scholar 

  38. Wu H, Cowing JA, Michaelides M et al (2006) Mutations in the gene KCNV2 encoding a voltage-gated potassium channel subunit cause „cone dystrophy with supernormal rod electroretinogram“ in humans. Am J Hum Genet 79:574–579

    Article  PubMed  CAS  Google Scholar 

  39. Wycisk KA, Zeitz C, Feil S et al (2006) Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am J Hum Genet 79:973–977

    Article  PubMed  CAS  Google Scholar 

  40. Yang Z, Peachey NS, Moshfeghi DM et al (2002) Mutations in the RPGR gene cause X-linked cone dystrophy. Hum Mol Genet 11:605–611

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohl, S. Genetische Ursachen erblicher Erkrankungen der Zapfen-Photorezeptoren. Ophthalmologe 106, 109–115 (2009). https://doi.org/10.1007/s00347-008-1864-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-008-1864-2

Schlüsselwörter

Keywords

Navigation