Lutein und Antioxidantien zur Prävention der AMD

Lutein and antioxidants in the prevention of age-related macular degeneration

Zusammenfassung

Aufgrund der demographischen Entwicklung ist in Europa und Nordamerika eine Zunahme der altersabhängigen Makuladegeneration (AMD) zu beobachten. Sie ist eine der führenden Ursachen für Blindheit und stellt gleichzeitig ein großes ökonomisches Problem dar.

Es gibt zahlreiche Hinweise, dass oxidativer Stress die Entwicklung der AMD begünstigt. Da das energiereiche blaue Licht an der neurosensorischen Netzhaut zu photooxidativen Schäden führen kann, ist das makuläre Pigment (MP) durch seinen Filtereffekt und seine antioxidative Wirkung für den Schutz der zentralen Netzhaut von hoher Bedeutung und wird oft als „natürliche Sonnenbrille“ bezeichnet. Das MP ist biochemisch eine Anreicherung von Lutein und Zeaxanthin. Diese Mikronährstoffe, genauso wie Vitamine mit antioxidativer Wirkung (vor allem Vitamin C, E und β-Karotin) können von Säugetieren nicht synthetisiert werden. Deswegen wird die Bedeutung der Ernährung bzw. der Supplementation für die Entstehung und Progression der AMD schon seit Jahren diskutiert.

Die Ergebnisse der bisher publizierten Studien, die den Zusammenhang zwischen MP und AMD untersuchten, sind widersprüchlich. Ein positiver Einfluss der Supplementation von Lutein und Zeaxanthin wurde bis jetzt in keiner randomisierten placebokontrollierten Studie nachgewiesen. Die therapeutische Beeinflussung der AMD durch einen erhöhten Konsum von Antioxidantien und ω-3-Fettsäuren (die in Meeresfischen vorkommen) wurde in den diesen Studien kontrovers bewertet.

Die bis jetzt größte abgeschlossene randomisierte placebokontrollierte Studie, die einen signifikanten Einfluss der Supplementation von Antioxidantien, Zink und Kupfer auf bestimmte Formen der AMD nachwies, ist die ARED Studie. Sie empfiehlt diese Supplementation nur für klar definierte Risikogruppen. Die Gabe von Lutein und ω-3-Fettsäuren ist nicht toxisch, aber bisher nicht durch randomisierte Studien abgesichert.

Abstract

Demographic developments in Europe and North America are causing an increase of age-related diseases. Age-related macular degeneration (AMD) is one of the leading causes of severe central visual acuity loss in elderly people and seems to be an economic problem, too. There is evidence that oxidative damage is an important factor for exacerbation of AMD. Macular pigment with its antioxidative effect may serve as“natural sunglasses” filtering the blue light acting as a possible source of photooxidative damage to the neurosensory retina. The macular pigment consists mostly of lutein and zeaxanthin. These micronutrients from the group of carotenoids, as is the case for vitamins (vitamins C, E, and β-carotene), cannot be synthesized in mammals and that is the reason why the role of micronutrition or its supplementation and its correlation to AMD progression has been discussed for years.

The results of currently published studies are often contradictory. At present there are no results from randomized controlled studies confirming that supplementation of lutein and zeaxanthin can reduce the risk for AMD. Several epidemiological studies investigating the impact of antioxidants and ω-3 fatty acids on the incidence of AMD provided conflicting results.

Up to now, AREDS is the largest randomized controlled study investigating the effect of supplementation of antioxidants, zinc, and copper on the progression of AMD. AREDS showed a significant effect of this supplementation in some particular groups of patients with AMD. The supplementation of lutein and ω-3 fatty acids is not toxic but a positive effect has not been proven by randomized studies.

This is a preview of subscription content, log in to check access.

Abb. 1

Abbreviations

AMD:

Altersabhängige Makuladegeneration, „age-related macular degeneration“

ARED(S):

Age-Related Eye Disease (Study)

ARM:

Age-related maculopathy

CNV:

Choroidale Neovaskularisationen

CuO:

Kupferoxid

DGE:

Deutsche Gesellschaft für Ernährung

DHA:

Docosahexaensäure

EDCCS:

Eye Disease Case-Control Study

EPA:

Eicosapentaensäure

GRAS:

Generally recognised as safe

L:

Lutein

LAST:

Lutein Antioxidant Supplementation Trial

MP:

Makuläres Pigment

MPD:

Makulapigmentdichte

POLA:

Pathologies Oculaires Liées à l’Age

RPE:

Retinales Pigmentepithel

USDA:

United States Department of Agriculture

VECAT:

Vitamin E, Cataract, and Age-related Maculopathy Trial

Vit.:

Vitamin

XBP:

Xanthophyll-binding-Protein

Z:

Zeaxanthin

ZnO:

Zinkoxid

Literatur

  1. 1.

    Age-Related Eye Disease Study Research Group (1996) Multicenter ophthalmic and nutritional age-related macular degeneration study-part 1: design, subjects and procedures. J Am Optom Assoc 67: 12–29

    Google Scholar 

  2. 2.

    Age-Related Eye Disease Study Research Group (2001) AREDS Report No.8 – A randomized, Placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss. Arch Ophthalmol 119: 1417–1436

    Google Scholar 

  3. 3.

    Age-Related Eye Disease Study Research Group (2004) AREDS Report No.18 – A simplified severity scale for age-related macular degeneration. Arch Ophthalmol 123: 1570–1574

    Article  Google Scholar 

  4. 4.

    Ahmend SS, McGregor NL, Marcus DM (2005) The macular Xanthophylls. Surv Ophthalmol 50: 183–193

    Article  Google Scholar 

  5. 5.

    Alves-Rodrigues A, Shao A (2004) The science behind Lutein. Toxicol Lett 150: 57–83

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Augood CA, Jong PT de, Chakravathy U et al. (2006) Prevalence of age-related maculopathy in older Europeans: the European Eye Study (EU-REYE). Arch Ophthalmol 124: 529–535

    PubMed  Article  Google Scholar 

  7. 7.

    Augustin AJ, Schmidt-Erfurth U (2002) Critical comments on the ARED study. Ophthalmologe 99: 299–300

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Beatty S, Koh H, Phil M et al. (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45: 115–134

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Beatty S, Murray IJ, Henson DB et al. (2001) Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest Ophthalmol Vis Sci 42: 439–446

    PubMed  CAS  Google Scholar 

  10. 10.

    Berendschot TT, Willemse-Assink JJ, Bastiaanse M et al. (2002) Macular pigment and melanin in age-related maculopathy in a general population. Invest Ophthalmol Vis Sci 43: 1928–1932

    PubMed  Google Scholar 

  11. 11.

    Bernstein PS, Zhao DY, Wintch SW et al. (2002) Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology 109: 1780–1787

    PubMed  Article  Google Scholar 

  12. 12.

    Biesalski HH (2007) Antioxidanzien – kein Grund zur Neubewertung. Ophthalmologe (online 27.6.2007; 10.1007/s00347–007–1579–9)

  13. 13.

    Bird AC, Bressler NM, Bressler SB et al. (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The international ARM Epidemiological Study Group. Surv Ophthalmol 39: 367–374

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Bjelakovic G, Nikolova D, Gluud LL et al. (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention. JAMA 297: 842–857

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Bone RA, Landrum JT (1984) Macular pigment in Henle fiber membranes: a model for Haidinger’s brushes. Vision Res 24: 103–108

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Bone RA, Landrum JT, Fernandez et al. (1988) Analysis of the macular pigment by HPLC: retinal distribution and age study. Invest Ophthalmol Vis Sci 29: 843–849

    PubMed  CAS  Google Scholar 

  17. 17.

    Bone RA, Landrum JT, Guerra LH et al. (2003) Lutein and zeaxanthin dietary supplements raise macular pigment density and serum contcentration of these carotenoids in humans. J Nutr 133: 992–998

    PubMed  CAS  Google Scholar 

  18. 18.

    Cardinault N, Abalain JH, Sairafi B et al. (2005) Lycopene but not lutein nor zeaxanthin decreases in serum and lipoproteins in age-related macular degeneration patients. Clin Chim Acta 357: 34–42

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Cho E, Hung S, Willett WC et al. (2001) Prospective study of dietary fat and the risk of age-related macular degeneration. Am J Clin Nutr 73: 209–218

    PubMed  CAS  Google Scholar 

  20. 20.

    Cho E, Seddon JM, Rosner WCW et al. (2004) Prospective study of intake of fruits, vegetables, vitamins and carotenoids and risk of age-related maculopathy. Arch Ophthalmol 122: 883–892

    PubMed  Article  Google Scholar 

  21. 21.

    Ciulla TA, Curran-Celantano J, Cooper DA (2001) Macular pigment optical density in a midwestern sample. Ophthalmology 108: 730–737

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Connor KM, Sangiovanni JP, Lofqvist C et al. (2007) Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 13: 868–873

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Cruickshanks KJ, Klein R, Klein BEK et al. (1995) Sunlight and age-related macular degeneration. Arch Ophthalmol 111: 514–518

    Google Scholar 

  24. 24.

    Dasch B, Fuhs A, Schmidt J (2005) Serum levels of macular carotenoids in relation to age-related maculopathy: the Muenster Aging and Retina Study (MARS). Graefes Arch Clin Exp Ophthalmol 243: 1028–1035

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Delcourt C, Diaz JL, Ponton-Sanchez A et al. (1998) Smoking and age-related macular degeneration. Arch Ophthalmol 116: 1031–1035

    PubMed  CAS  Google Scholar 

  26. 26.

    Delcourt C, Cristol JP, Tessier F et al. (1999) Age-related degeneration and antioxidant status in the POLA Study. Arch Ophthalmol 117: 1384–1390

    PubMed  CAS  Google Scholar 

  27. 27.

    Doenecke D, Koolman J, Fuchs G et al. (2005) Karlsons Biochemie und Pathobiochemie. Thieme, Stuttgart New York, S 336–338

  28. 28.

    Edwards AO, Ritter R 3rd, Abel KJ et al. (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308: 421–424

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Evans JR (2001) Risk factors for age-related macular degeneration. Prog Retin Eye Res 20: 227–253

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Evans JR (2006) Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev 19: CD000254

    Google Scholar 

  31. 31.

    Evans JR, Fletcher AE, Wormald RPL (2005) 28000 cases of age related macular degeneration causing visual loss in people aged 75 years and above in the United Kingdom may be attributable to smoking. Br J Ophthalmol 89: 550–553

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Flood V, Smith W, Wang JJ et al. (2002) Dietary antioxidant intake and incidence of early age-related maculopathy: the Blue Mountains Eye Study. Ophthalmology 109: 2272–2278

    PubMed  Article  Google Scholar 

  33. 33.

    Garrett SK, Thomas AP, Cicuttini F et al. (2000) Community-based recruitment strategies for a longitudinal interventional study: the VECAT experience. J Clin Epidemiol 53: 541–548

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Hammond BR, Caruso-Avery M (2000) Macular pigment optical density in a Southwestern sample. Invest Ophthalmol Vis Sci 41: 1492–1497

    PubMed  Google Scholar 

  35. 35.

    Hammond BR Jr, Fuld K, Curran-Celentano J (1995) Macular pigment density in monozygotic twins. Invest Ophthalmol Vis Sci 36: 2531–2541

    PubMed  Google Scholar 

  36. 36.

    Hammond BR Jr, Johnson EJ, Russel R et al. (1997) Dietary modification of human macular pigment density. Invest Ophthalmol Vis Sci 38: 1795–1801

    PubMed  Google Scholar 

  37. 37.

    Hayes KC (1974) Retina degeneration in monkeys induced by deficiency of vitamin E or A. Invest Ophthalmol Vis Sci 13: 499–510

    CAS  Google Scholar 

  38. 38.

    Hogg R, Chakravathy U (2004) AMD and micronutrient antioxidants. Curr Eye Res 29: 387–401

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Hodge WG, Schachter HM, Barnes D et al. (2006) Efficacy of ω-3 fatty acids in preventing age-related macular degeneration. Ophthalmology 113: 1165–1173

    PubMed  Article  Google Scholar 

  40. 40.

    Holz FG, Wolfensberger TJ, Piguet B et al. (1993) Oral zinc and the second second eye in age-related macular degeneration: A double blind study. Ger J Ophthalmol 2: 391

    Google Scholar 

  41. 41.

    Jahn C, Brinkmann C, Mößner A et al. (2006) Jahreszeitliche Schwankungen und Einfluss der Ernährung auf die makuläre Pigmentdichte. Ophthalmologe 103: 136–140

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Johnson EJ (2005) Obesity, lutein metabolism, and age-related macular degeneration: a web of connections. Nutr Rev 63: 9–15

    PubMed  Article  Google Scholar 

  43. 43.

    Kahn HA, Leibowitz HM, Ganley JP et al. (1977) The Framingham Eye Study. II. association of ophthalmic pathology with single variables previously measured in the Framingham Heart Study. Am J Epidemiol 106: 33–41

    PubMed  CAS  Google Scholar 

  44. 44.

    Kaiser HJ, Flammer J, Stumpfig D et al. (1995) Visaline in the treatment of age-related macular degeneration: A pilot study. Ophthalmologica 209: 302–305

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Klein R, Davis MD, Magli YL et al. (1991) Wisconsin age-related maculopathy grading system. Ophthalmology 98: 1128–1134

    PubMed  CAS  Google Scholar 

  46. 46.

    Klein R, Klein BE, Linton KL (1992) Prevalence of age-related maculopathy. The Beaver Dam Study. Ophthalmology 99: 933–943

    PubMed  CAS  Google Scholar 

  47. 47.

    Landrum JT, Bone RA, Joa H et al. (1997) A one year study of macular pigment: The effect of 140 days of lutein supplement. Exp Eye Res 65: 57–62

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Mares-Perlman JA, Brady WE, Klein R et al. (1995) Serum antioxidants and age-related macular degeneration in a population-based case-control study. Arch Ophthalmol 113: 1518–1523

    PubMed  CAS  Google Scholar 

  49. 49.

    Mares-Perlman JA, Fisher AI, Palta M et al. (2001) Lutein and Zeaxanthin in the diet and serum and their relation to age-related maculopathy in the third national health and nutrition examination survey. Am J Epidemiol 153: 424–432

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Mares-Perlman JA, Millen AE, Ficek TL et al. (2002) The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J Nutr 132: 518S–524S

    PubMed  Google Scholar 

  51. 51.

    Mitchell P, Wang JJ, Smith W et al. (2002) Smoking and the 5-year incidence of age-related maculopathy. The Blue Mountains Eye Study. Arch Ophthalmol 120: 1357–1363

    PubMed  Google Scholar 

  52. 52.

    Newsome DA, Swartz M, Leone NC et al. (1988) Oral zinc in macular degeneration. Arch Ophthalmol 106: 192–198

    PubMed  CAS  Google Scholar 

  53. 53.

    Omenn GS, Goodman GE, Thornquist MD et al. (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334: 1150–1155

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Pauleikhoff D, Koch JM (1995) Prevalence of age-related macular degeneration. Curr Opin Ophthalmol 6: 51–56

    PubMed  CAS  Google Scholar 

  55. 55.

    Richer S (1996) Multicenter ophthalmic and nutritional age-related macular degeneration study–part 2: antioxidant intervention and conclusions. J Am Optom Assoc 67: 30–49

    PubMed  CAS  Google Scholar 

  56. 56.

    Richer SP (1993) Is there a prevention and treatment strategy for macular degeneration? J Am Optom Assoc 64: 838–850

    PubMed  CAS  Google Scholar 

  57. 57.

    Richer SP, Stiles W, Statkute L et al. (2004) Double-masked, placebo-controlled, randomized trial of Lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry 75: 216–230

    PubMed  Google Scholar 

  58. 58.

    Robman LD, Tikellis G, Garrett SK (1999) Baseline ophthalmic findings in the vitamin E, cataract and age-related maculopathy (VECAT) study. Aust N Z J Ophthalmol 27: 410–416

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Scholl HP, Fleckenstein M, Issa PC et al. (2007) An update on the genetics of age-related macular degeneration. Mol Vis 13: 196–205

    PubMed  CAS  Google Scholar 

  60. 60.

    Schmidt-Erfurth U (2005) Nutrition and retina. Dev Ophthalmol 38: 120–147

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Schrader WF (2006) Altersbedingte Makuladegeneration. Sozioökonomische Zeitbombe in der alternden Gesellschaft. Ophthalmologe 103: 742–748

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Seddon JM, Alani UA, Sperduto RD et al. (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. JAMA 272: 1413–1420

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Seigel D (2002) AREDS investigators distort findings. Arch Ophthalmol 120: 100–101

    PubMed  Google Scholar 

  64. 64.

    Snellen EL, Verbeek AL, Van Den Hoogen GW (2002) Neovascular age-related macular degeneration and its relationship to antioxidant intake. Acta Ophthalmol Scand 80: 368–371

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62: 1448S–1461S

    PubMed  CAS  Google Scholar 

  66. 66.

    Snodderly DM, Auran JD, Delori FC (1984) The macular pigment. II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci 25: 674–683

    PubMed  CAS  Google Scholar 

  67. 67.

    Stur M, Tittl M, Reitner A et al. (1996) Oral zinc and the second eye in age-related macular degeneration. Invest Ophthalmol Vis Sci 37: 1225–1235

    PubMed  CAS  Google Scholar 

  68. 68.

    Suner IJ, Espinosa-Heidmann DG, Marin-Castano ME, Hernandez et al. (2004) Nicotine increases size and severity of experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 45: 311–317

    PubMed  Article  Google Scholar 

  69. 69.

    Taylor HR, West S, Munoz B et al. (1994) The long-term effects of visible light on the eye. Arch Ophthalmol 110: 99–104

    Google Scholar 

  70. 70.

    Tan JS, Mitchell P, Smith W et al. (2007) Cardiovascular risk factors and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology114: 143–150

  71. 71.

    Thomson LR, Toyoda Y, Langner A et al. (2002) Elevated retinal zeaxanthin and prevention of light-induced photoreceptor cell death in quail. Invest Ophthalmol Vis Sci 43: 3538–3549

    PubMed  Google Scholar 

  72. 72.

    Trieschmann M, Beatty S, Nolan JM et al. (2007) Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin: The LUNA study. Exp Eye Res 84: 718–28; Epub 2006 Dec

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    VandenLagenberg GM, Mares-Perlman JA, Klein R et al. (1998) Associations between antioxidant and zinc intake and the 5-year incidence of early age-related maculopathy in the Beaver Dam Eye Study. Am J Epidemiol 148: 204–214

    Google Scholar 

  74. 74.

    Leeuwen R van, Boekhoorn S, Vingerling JR et al. (2005) Dietary intake of antioxidants and risk of age-related macular degeneration. JAMA 294: 3101–3107

    PubMed  Article  Google Scholar 

  75. 75.

    Vingerling JR, Dielemans I, Hofman A et al. (1995) The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology 102: 205–210

    PubMed  CAS  Google Scholar 

  76. 76.

    Wald G (1949) The photochemistry of vision. Doc Ophthalmol 3: 94–137

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Werner JS, Donnelly SK, Kliegl R (1987) Aging and human macular pigment density: appended with translations from the work of Max Schultze and Ewald Hering. Vision Res 27: 257–268

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Wooten BR, Hammond BR (2002) Macular pigment: influences on visual acuity and visibility. Prog Retin Eye Res 21: 225–240

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122: 598–6144

    PubMed  Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. P. Wiedemann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rehak, M., Fric, E. & Wiedemann, P. Lutein und Antioxidantien zur Prävention der AMD. Ophthalmologe 105, 37–45 (2008). https://doi.org/10.1007/s00347-007-1602-1

Download citation

Schlüsselwörter

  • Altersabhängige Makuladegeneration
  • Prävention
  • Lutein
  • Antioxidantien

Keywords

  • Age-related macular degeneration
  • Prevention
  • Lutein
  • Antioxidants