Skip to main content
Log in

Femtosekundenlaser für die refraktive Hornhautchirurgie

Grundlagen, Wirkungsweise und klinische Anwendungen

Femtosecond laser for refractive corneal surgery

Foundations, mode of action and clinical applications

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die moderne korneale Hornhautchirurgie zur Korrektur von Fehlsichtigkeiten erfordert eine präzise, zuverlässige und reproduzierbare Erzeugung von Hornhautlentikeln (Flaps). Die Verwendung von ultrakurzen Laserpulsen im Zeitbereich von wenigen 100 fs (10-13 s) bietet die Möglichkeit, okuläres Gewebe ohne thermischen Einfluss auf umliegende Gewebestrukturen zu schneiden. Über mechanisch-optische Adaption der Femtosekundenlaser an das Gewebe lassen sich heute sehr dünne Flaps mit einer mittleren Dicke von 100 µm und einer hohen Reproduzierbarkeit (Standardabweichung ca. 10 µm) erzeugen. Somit bieten Femtosekundenlaser bereits heute eine Alternative zu herkömmlichen mechanischen Mikrokeratomen. Bezüglich Sicherheit im klinischen Einsatz sind die Femtosekundenlaser und die mechanischen Mikrokeratome durchaus vergleichbar.

Abstract

Modern corneal laser surgery for the correction of optical errors of the eye requires a precise, reliable and reproducible creation of corneal lenticels (flaps). The use of ultra-short laser pulses with pulse durations of a few 100 femtoseconds (10−13 s) allows for non-thermal cuts of ocular tissue. Mean flap thicknesses as small as 100 μm with a reproducibility of 10 μm (standard deviation) can be created by using mechano-optical adaptations through the eye. Thus, the femtosecond laser can be considered a good alternative approach with a safety in clinical use that is comparable with that of mechanical microkeratomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Jesse K (2005) Femtosekundenlaser. Springer, Berlin Heidelberg

  2. Keller U (2003) Recent developements in compact ultrafast lasers. Nature 424: 831–838

    Article  PubMed  Google Scholar 

  3. Du D, Liu L, Korn G et al. (1994) Laser induced optical breakdown by impact ionization in SiO2 with pulse width from 7 ns to 150 fs. Appl Phys Lett 64: 3071–3073

    Article  Google Scholar 

  4. Juhasz T, Spooner G, Sacks Z et al. (2004) Ophthalmic Applications of Ultrashort Pulsed Lasers. SPIE Proceedings 5340: 66–75

    Article  Google Scholar 

  5. Stonecipher K, Ignacio TS, Stoneceipher M (2006) Advances in refractive Surgery: microkeratome and flap creation in relation to safety, efficacy, predictability, and biomechanical stability. Curr Opin ophthalmol 17: 368–372

    Article  PubMed  Google Scholar 

  6. Kurtz RM, Horvath C, Liu HH et al. (1998) Optimal Laser Parameter for Intrastromal Corneal Surgery. SPIE Proceedings 3255: 56–66

    Article  Google Scholar 

  7. Lubatschowski H, Maatz G, Heisterkamp A et al. (2000) Application of ultrashort laser pulses for intrastromal refractive surgery. Greafe’s Arch Clin exp ophthalmol 238: 33–39

    Google Scholar 

  8. Ratkay-Traub I, Ferincz IE, Juhasz T et al. (2003) First clinical results with the femtosecond neodynium-glass laser in refractive surgery. J Refract Surg 19: 94–103

    PubMed  Google Scholar 

  9. Sikder S, Snyder RW (2006) Femtosecond laser preparation of donor tissue from the endothelial side. Cornea 25: 416–422

    Article  PubMed  Google Scholar 

  10. Terry MA, Ousley PJ, Will B (2005) A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography. Cornea 24: 453–459

    Article  PubMed  Google Scholar 

  11. Seitz B, Langenbucher A, Hofmann-Rummelt C et al. (2003) Nonmechanical posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decomposition. Am J Opthalmol 136: 769–772

    Article  Google Scholar 

  12. Sarayba MA, Juhasz T, Chuck RS et al. (2005) Femtosecond laser posterior lammelar keratoplasty: a laboratory model. Cornea 24: 328–333

    Article  PubMed  Google Scholar 

  13. Kurtz R, Spooner GJR, Sletten K et al. (1999) Ophthalmic Applications of Femtosecond Lasers. SPIE Proceedings Comercial and Biomedical Applications of Ultrafast Lasers. SPIE Proceedings 3616: 51–65

    Article  Google Scholar 

  14. Toyran S, Liu Y, Singha S et al. (2005) Femtosecond laser photodisruption of human trabecular meshwork: an in vitro study. Exp Eye Res 81: 298–305

    PubMed  Google Scholar 

  15. Ngoi BK, Hou DX, Koh LH et al. (2005) Femtosecond laser for glaucoma treatment: a study on ablation energy in pig iris. Lasers Med Sci 19: 218–222

    Article  PubMed  Google Scholar 

  16. Sacks ZS, Kurtz RM, Juhasz T et al. (2003) Subsurface photodisruption in human sclera: wavelength dependence. Ophthalmic Surg Lasers Imaging 34: 104–113

    PubMed  Google Scholar 

  17. Sacks ZS, Kurtz RM, Juhasz T et al. (2002) High precision subsurface photodisruption in human sclera. J Biomed Opt 7: 442–450

    Article  PubMed  Google Scholar 

  18. Sawa M, Awazu K, Takahashi T et al. (2004) Application of femtosecond ultrashort pulse laser to photodynamic therapy mediated by indocyanine green. Br J Ophthalmol 88: 826–831

    Article  PubMed  Google Scholar 

  19. Ripken T, Heisterkamp A, Oberheide U et al. (2003) First in-vivo studies of presbyopia treatment with ultrashort laserpulses. SPIE Proceedings 5142: 137–145

    Article  Google Scholar 

  20. Krueger RR, Kuszak J, Lubatschowski H et al. (2005) First safety study of femtosecond laser photodisruption in animal lenses: tissue morphology and cataractogenesis. J Cataract Refract Surg 31: 2386–2394

    Article  PubMed  Google Scholar 

  21. Donges A (1988). Physikalische Grundlagen der Lasertechnik. Hüthig Verlag

  22. Mainster MA, Sliney DH, Belcher CD et al. (1983) Laser Photodisruptors – Damage Mechanism, Instrument Design and Safety. Ophthalmology 90: 973–991

    PubMed  Google Scholar 

  23. Vogel A, Venugopalan V (2003) Mechanism of pulsed laser ablation of biological tissue. Chemical Reviews 103: 577–644

    Article  PubMed  Google Scholar 

  24. Juhasz T, Kastis G, Turi L et al. (1996) Shock wave and cavitation bubble dynamics during photodisruption in ocular media and their dependence on the pulse duration. SPIE Proceddings 2681: 428–436

    Article  Google Scholar 

  25. Loesel F, Niemz MH, Bille JF et al. (1996) Laser-induced optical breakdown on hard and soft tissue and ist dependence on the pulse duration: experiment and model. IEEE Journakl of Quantum Electronics 32: 1717–1722

    Article  Google Scholar 

  26. Arnold CL, Heisterkamp A, Ertmer W et al. (2005) Streak formation as a side effect of optical breakdown during processing the bulk of trasparent Kerr media with ultra-short laser pulses. Appl Phys B 80: 247–253

    Article  Google Scholar 

  27. Schaffer CB, Nishiimura N, Glezer EN et al. (2002) Dynamics of femtosecond laser-iduced breakdown in water from femtoseconds to microseconds. Optics Express 10: 196–203

    Google Scholar 

  28. Vogel A, Hentschel W, Holzfuss J et al. (1986) Kavitationsblasendynamik und Stosswellenabstrahlung bei der Augenchirurgie mit gepulsten Neodym: YAG-Lasern. Klin Mbl Augenheilkunde 198: 308–316

    Google Scholar 

  29. Vogel A, Noak J, Nahen K et al. (1999) Energy balance of optical breakdown in water at nanosecond to femtosecond time scale. Applied Physics B. Laser Optics 68: 271–280

    Article  Google Scholar 

  30. Le Harzic R, Bückle R, Wüllner C et al. (2005) Laser safety aspects for refractive eye surgery with femtosecond pulses. Medical Laser Application 20: 233–238

    Article  Google Scholar 

  31. Roach WP, Johnson TE, Rockwell BA (1999) Proposed maximum permissible exposure limits for ultrashort laser pulses. Health Physics 76: 349–354

    PubMed  Google Scholar 

  32. International Commission on Non-Ionizing Radiation Protection (2000) Revision of Guidelines on Limits of exposure to laser radiation of Wavelengths between 400 nm and 1.4 μm. Health Physics 79: 431–440

    PubMed  Google Scholar 

  33. Schumacher S, Sander M, Döpke C et al. (2005) Investigation of retinal damage during refractive eye surgery. SPIE 5688: 268–277

    Article  Google Scholar 

  34. Vogel A, Nahen K, Theisen D et al. (1999) Influence of optical aberrations on laser-induced plasma formation in water and their consequenses for intraocular photodisruption. Applied optics 38: 3636–3643

    Google Scholar 

  35. Stonecipher K, Dishler JG, Ignacio TS et al. (2006) Transient light sensitivity after femtosecond laser flap creation: clinical findings and management. J Cataract Refract Surgery 32: 91–94

    Article  Google Scholar 

  36. Heisterkamp A, Ripken T, Lubatschowski H et al. (2001) Optimization of the Parameters for Intrastromal Refractive Surgery with Ultrashort Laser Pulses. SPIE Proceedings 4245: 246–254

    Article  Google Scholar 

  37. Petersen H, Seiler T (1999) Laser in-situ keratomileusis (LASIK). Ophthalmologe 96: 240–247

    Article  PubMed  Google Scholar 

  38. Knorz MC, Jendritza B, Hugger P et al. (1999) Komplikationen der Laser-in-situ-keratomileusis (LASIK). Ophthalmologe 96: 503–508

    Article  PubMed  Google Scholar 

  39. Eine Auflistung der in USA zugelassenen Lasersystem sowie die Zusammenfassung der bei den einzelnen Zulassungsverfahren durchgeführten klinischen Studien findet man unter http: //www.fda.gov/cdrh/LASIK/lasers.htm

  40. Seiler T, Koufala K, Richter G (1998) Iatrogenic keratectasia after laser in situ keratomileusis. J Refract Surg 14: 312–317

    PubMed  Google Scholar 

  41. Jacobs BJ, Deutsch TA, Rubenstein JB (1999) Reproducibility of corneal flap thickness in LASIK. Ophthalmic Surg Lasers 30: 350–353

    PubMed  Google Scholar 

  42. Yi WM, Joo CK (1999) Corneal flap thickness in laser in situ keratomileusis using an SCMD manual microkeratome. J Cataract Refract Surg 25: 1087–1092

    Article  PubMed  Google Scholar 

  43. Choi YI, Park SJ, Song BJ (2000) Corneal flap dimensions in laser in situ keratomileusis using the Innovatome automatic microkeratome. Korean J Ophthalmol 14: 7–11

    PubMed  Google Scholar 

  44. Yildirim R, Aras C, Ozdamar A et al. (2000) Reproducibility of corneal flap thickness in laser in situ keratomileusis using the Hansatome microkeratome. J Cataract Refract Surg 26: 1729–1732

    Article  PubMed  Google Scholar 

  45. Durairaj VD, Balentine J, Kouyoumdjian G et al. (2000) The predictability of corneal flap thickness and tissue laser ablation in laser in situ keratomileusis. Ophthalmology 107: 2140–2143

    Article  PubMed  Google Scholar 

  46. Schumer DJ, Bains HS (2001) The Nidek MK-2000 microkeratome system. J Refract Surg 17 [2 Suppl]: S250–251

    PubMed  Google Scholar 

  47. Sarkisian KA, Petrov AA (2001) Experience with the Nidek MK-2000 microkeratome in 1,220 cases. J Refract Surg 17[2 Suppl]: S252–254

    PubMed  Google Scholar 

  48. Naripthaphan P, Vongthongsri A (2001) Evaluation of the reliability of the Nidek MK-2000 microkeratome for laser in situ keratomileusis. J Refract Surg 17 [2 Suppl]: S255–258

    PubMed  Google Scholar 

  49. Muallem MS, Yoo SY, Romano AC et al. (2004) Corneal flap thickness in laser in situ keratomileusis using the Moria M2 microkeratome. J Cataract Refract Surg 30: 1902–1908

    Article  PubMed  Google Scholar 

  50. Shemesh G, Dotan G, Lipshitz I (2002) Predictability of corneal flap thickness in laser in situ keratomileusis using three different microkeratomes. J Refract Surg 18 [3 Suppl]: S347–351

    PubMed  Google Scholar 

  51. Gailitis RP, Lagzdins M (2002) Factors that affect corneal flap thickness with the Hansatome microkeratome. J Refract Surg 18(4): 439–443

    PubMed  Google Scholar 

  52. Spadea L, Cerrone L, Necozione S et al. (2002) Flap measurements with the Hansatome microkeratome. J Refract Surg 18: 149–154

    PubMed  Google Scholar 

  53. Maldonado MJ, Ruiz-Oblitas L, Munuera JM et al. (2000) Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism. Ophthalmology 107: 81–87

    Article  PubMed  Google Scholar 

  54. Giledi O, Mulhern MG, Espinosa M et al. (2004) Reproducibility of LASIK flap thickness using the Hansatome microkeratome. J Cataract Refract Surg 30: 1031–1037

    Article  PubMed  Google Scholar 

  55. Gokmen F, Jester JV, Petroll WM et al. (2002) In vivo confocal microscopy through-focusing to measure corneal flap thickness after laser in situ keratomileusis. J Cataract Refract Surg 28: 962–970

    Article  PubMed  Google Scholar 

  56. Binder PS (2004) Flap dimensions created with the IntraLase FS laser. J Cataract Refract Surg 30: 26–32

    PubMed  Google Scholar 

  57. Kezirian GM, Stonecipher KG (2004) Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis. J Cataract Refract Surg 30: 804–811

    Article  PubMed  Google Scholar 

  58. Talamo JH, Meltzer J, Gardner J (2006) Reproducibility of flap thickness with IntraLase FS and Moria LSK-1 and M2 microkeratomes. J Refract Surg 22: 556–561

    PubMed  Google Scholar 

  59. Binder PS (2006) One thousand consecutive IntraLase laser in situ keratomileusis flaps. J Cataract Refract Surg 32: 962–969

    Article  PubMed  Google Scholar 

  60. Holzer MP, Rabsiler TM, Auffahrt GU (2006) Femtosecond laser-assisted corneal flap cuts: morphology, accuracy, and histopathology. Invest Ophthalmol Vis Sci 47: 2828–2831

    Article  PubMed  Google Scholar 

  61. Lim T, Yang S, Kim M et al. (2006) Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis. Am J Ophthalmol 141: 833–839

    Article  PubMed  Google Scholar 

  62. Tran DB, Sarayba MA, Bor Z et al. (2005) Randomized prospetive clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes – Potentential impact on wavefront-guided laser in situ keratomileusis. J Cataract Refract Surg 31: 97–105

    Article  PubMed  Google Scholar 

  63. Sonigo B, Iordanidou V, Chong-Sit D et al. (2006) In vivo conreal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situe keratomileusis. Invest Ophthalmol Vis Sci 47: 2803–2811

    Article  PubMed  Google Scholar 

  64. Liftshitz T, Levy J, Klemperer I et al. (2005) Anterior chamber gas bubbles after corneal flap creation with a femtosecond laser. J Cataract Refract Surg 31: 2227–2229

    Article  PubMed  Google Scholar 

  65. Chung SH, Roh MI, Park MS et al. (2006) Mycobacterium absecessus keratitis after LASIK with IntraLase femtosecond laser. Ophthalmologica 220: 277–280

    Article  PubMed  Google Scholar 

  66. Principle AH, Lin DY, Small KW et al. (2004) Macular hemorrhage after laser in situ keratomileusis (LASIK) with femtosecond laser flap creation. Am J Ophthalmol 138: 657–659

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mrochen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mrochen, M., Donges, A. & Korn, G. Femtosekundenlaser für die refraktive Hornhautchirurgie. Ophthalmologe 103, 1005–1013 (2006). https://doi.org/10.1007/s00347-006-1450-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-006-1450-4

Schlüsselwörter

Keywords

Navigation