Skip to main content
Log in

Topodiagnostik supranukleärer Augenbewegungsstörungen

Teil II: Vertikale und torsionelle Okulomotorik, Synopsis von Sakkaden u. Folgebewegungen

Diagnosis of supranuclear eye movement disorders

Part II: Vertical and torsional oculomotoricity

  • CME Weiterbildung · Zertifizierte Fortbildung
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Kennzeichen einer supranukleären Augenbewegungsstörung ist die Funktionsstörung einer oder mehrerer Augenbewegungstypen bei gleichzeitigem Erhalt anderer Augenbewegungstypen. Jede Information für eine bestimmte Augenbewegung läuft über die Kerngebiete der Augenmuskelnerven. Ihnen vorgeschaltet sind umschriebene pränukleäre kortikale und subkortikale Hirnzentren, die je nach Augenbewegungstyp aktiviert werden. Die für die vertikale und torsionelle Okulomotorik relevanten Strukturen werden vorgestellt und ihre funktionelle Beziehung zueinander aufgezeigt. Außerdem wird eine Zusammenfassung über die Entstehung von Sakkaden und Folgebewegungen gegeben und auf den zerebellaren Einfluss auf die Okulomotorik eingegangen. Die Kenntnis der für Augenbewegungen relevanten Hirnstrukturen erlaubt es, bei einer bestimmten supranukleären Augenbewegungsstörung den zugrunde liegenden Krankheitsprozess sofort zu erkennen bzw. das Krankheitsgeschehen in eine bestimmte anatomische Region zu lokalisieren. Die gezielte Untersuchung von Augenbewegungen bildet so ein wichtiges klinisches Diagnostikum für viele neurologische und neuroophthalmologische Erkrankungen.

Abstract

The hallmark of a supranuclear eye movement disorder is functional impairment of one or several types of different eye movements while other types of eye movement remain unchanged. All eye movement information is conveyed via the nuclei of the eye muscle nerves. However, the information for a specific type of eye movement is generated in prenuclear cortical and subcortical areas which are activated depending on the type of eye movement performed. The structures responsible for vertical and torsional oculomotoricity are described as well as the functional relationship between them. A summary of the development of saccades and movements arising from them is also given and the influence of the cerebellum on oculomotor processes is dealt with. In many neurological conditions knowledge about the areas of the brain relevant for eye movement enables a clinical diagnosis to be made or the pathological process to be localized to a specific anatomical area. Examination of eye movements is thus a valuable clinical tool in many neurological and neuro-ophthalmological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Apte SN, Langston JW (1983) Permanent neurologic deficits due to lithium toxicity. Ann Neurol 13: 453–455

    Article  PubMed  Google Scholar 

  2. Barton JJS, Simpson T, Kirakopolos E et al. (1996) Functional MRI of lateral occipito-temporal cortex during pursuit and motion perception. Ann Neurol 40: 387–398

    Article  PubMed  Google Scholar 

  3. Brandt T, Dietrich M (1994) Vestibular syndromes in the roll plane: topographic diagnosis from brain stem to cortex. Ann Neurol 36: 337–347

    Article  PubMed  Google Scholar 

  4. Büttner-Ennever JA, Cohen B, Horn AKE et al. (1982) Vertical gaze paralysis and the rostral interstitial nucleus of the medial longitudinal fasciculus. Brain 105: 125–149

    PubMed  Google Scholar 

  5. Carpenter RHS (1988) Movement of the eyes, 2nd edn. Pion Limited, London

  6. Fredericks CA, Giolli RA, Blanks RHI (1988) The human accessory optic system. Brain 454: 116–122

    Article  Google Scholar 

  7. Fuchs AF, Robinson FR, Straube A (1993) Role of the cauda fastigial nucleus insaccade generation. I. Neuronal discharge pattern. J Neurophysiol 70: 1723–1740

    PubMed  Google Scholar 

  8. Goldberg ME (2000) The control of gaze. In: Kandel ER Schwartz JH, Jesell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York

  9. Heide W, Kömpf D (1998) Hemispherische kortikale Augenbewegungsstörungen. In: Huber A, Kömpf D (Hrsg) Klinische Neuroophthalmologie. Thieme, Stuttgart New York, S 582–596

  10. Horn AKE, Büttner-Ennever JA (1998) Premotoneurons for vertical eye movements in the rostral mesencephalon of monkey and man: the histological identification by parvalbumin immunostaining. J Comp Neurol 392: 413–427

    Article  PubMed  Google Scholar 

  11. Keating EG, Gooley SG (1988) Saccadic disorders caused by cooling the superior colliculus or frontal eye field or from combined lesions of both structures. Brain Res 438: 247–255

    Article  PubMed  Google Scholar 

  12. Kleine JF, Guan Y, Buttner U (2003) Saccade related neurons in the primate fastigial nucleus: what do they encode? J Neurophysiol 90: 3137–3154

    Article  PubMed  Google Scholar 

  13. Kokkoroyannis T, Scudder CA, Balaban CD et al. (1996) Anatomy and physiology of the primate interstitial nucleus of Cajal. 1. Efferent projections. J Neurophysiol 75: 725–739

    PubMed  Google Scholar 

  14. Komatsu H, Wurtz RH (1988) Relation of cortical areas MT and MST to pursuit eye movements. I. Localisation and visual properties of neurons. J Neurophysiol 60: 588–603

    Google Scholar 

  15. Komatsu H, Wurtz RH (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal and extraretinal signals. J Neurophysiol 60: 604–620

    PubMed  Google Scholar 

  16. Komatsu H, Wurtz RH (1989) Modulation of pursuit eye movements by stimulation of cortical areas MT and MST. J Neurophysiol 62: 31–47

    PubMed  Google Scholar 

  17. Kommerell G (2003) Supranukleäre Augenbewegungstörungen. In: Kaufmann H (Hrsg) Strabismus. Thieme, Stuttgart New York, S 479–480

  18. Kommerell G, Henn V, Bach M et al. (1987) Unilateral lesion of the paramedian pontine reticular formation. Loss of rapid eye movements with preservation of the vestibule-ocular reflex and pursuit. Neuroophthalmology 7: 93–98

    Google Scholar 

  19. Langer T, Fuchs AF, Chubb MC (1985) Floccular efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase. J Comp Neurol 235: 26–37

    Article  PubMed  Google Scholar 

  20. Langer T, Kaneko CRS, Scudder CA et al. (1986) Afferents to the abducens nucleus in the monkey and cat. J Comp Neurol 245: 379–340

    Article  PubMed  Google Scholar 

  21. Lawden MC, Bagelmann H, Crawford TJ et al. (1995) An effect of structured backgrounds on smooth pursuit eye movements in patients with cerebral lesions. Brain 118: 37–48

    PubMed  Google Scholar 

  22. Leigh RJ (1989) The cortical control of ocular pursuit movements. Rev Neurol 145: 605–612

    PubMed  Google Scholar 

  23. Lisberger SG, Morris EJ, Tychsen L (1987) Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Ann Rev Neurosci 10: 97–129

    Article  PubMed  Google Scholar 

  24. Lynch JC, Graybiel A, Lobeck L (1985) The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J Comp Neurol 235: 241–254

    Article  PubMed  Google Scholar 

  25. Nagao S, Kitamura T, Nakamur N et al. (1997) Differences of the primate flocculus and ventral paraflocculus in the mossy and climbing fiber input organization. J Comp Neurol 382: 480–498

    Article  PubMed  Google Scholar 

  26. Optican LM, Robinson DA (1980) Cerebellar dependant adaptive control of the primate saccadic system. J Neurophysiol 44: 1058–1076

    PubMed  Google Scholar 

  27. Pola J, Wyatt HJ (1980) Target position and velocity: the stimuli for smooth pursuit eye movements. Vision Res 20: 523–534

    Article  PubMed  Google Scholar 

  28. Ritchie L (1976) Effects of cerebellar lesions on saccadic eye movements. J Neurophysiol 39: 1246–1256

    PubMed  Google Scholar 

  29. Robinson DA, Gordon JL, Gordon SE (1986) A model of the smooth pursuit eye system. Biol Cybernetics 55: 43–57

    Article  Google Scholar 

  30. Robinson FR, Straube A, Fuchs AF (1993) Role of the cauda fastigial nucleus in saccade generation. II. A effect of muscimol inactivation. J Neurophysiol 70: 1741–1758

    PubMed  Google Scholar 

  31. Schiller PH, True SD, Conway JL (1980) Deficits in eye movements following frontal eye field and superior colliculus ablations. J Neurophysiol 44: 1175–1189

    PubMed  Google Scholar 

  32. Squatrito S, Maioli MG (1997) Encoding of smooth pursuit direction and eye position by neurons of area MSTd of macaque monkey. J Neurosci 17: 3847–3860

    PubMed  Google Scholar 

  33. Suzuku Y, Büttner-Ennever JA, Straumann D et al. (1995) Deficits in torsional and vertical rapid eye movements and shift of Listing’s plane after uni- and bilateral lesions of the rostral interstitial nucleus of the medial longitudinal fasciculus. Exp Brain Res 106: 205–232

    PubMed  Google Scholar 

  34. Takagi M, Zee DS, Tamargo RJ (1998) Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol 80: 1911–1931

    PubMed  Google Scholar 

  35. Thurston SE, Leigh RJ, Crawford T et al. (1988) Two distinct deficits of visual tracking caused by unilateral lesions of cerebral cortex in humans. Ann Neurol 23: 266–273

    Article  PubMed  Google Scholar 

  36. Tusa RJ, Zee DS, Herdmann SJ (1986) Effects of unilateral cerebral cortical lesions on ocular motor behaviour in monkeys. Saccades and quick phases. J Neurophysiol 56: 1509–1625

    Google Scholar 

  37. Vahedi K, Rivaus S, Amarenco P et al. (1995) Horizontal eye movement disorders after posterior vermis infarctions. J Neurol Neurosurg Psychiatry 58: 91–94

    PubMed  Google Scholar 

  38. Westheimer G, Blair SM (1973) Oculomotor defects in cerebellectomized monkeys. Invest Ophthalmol Vis Sci 12: 618–621

    Google Scholar 

  39. Zee DS, Yamaki A, Butler PH et al. (1987) Effects of ablation of flocculus and paraflocculus on eye movements in primate. J Neurophysiol 58: 883–907

    PubMed  Google Scholar 

  40. Zeki S, Watson JDG, Robinson DA et al. (1997) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11: 641–649

    Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Steffen.

Weiterführende Literatur

Weiterführende Literatur

  1. 1.

    Albano JE, Mishkin M, Weatbrok LE et al. (1982) Visuomotor deficits following ablation of monkey superior colliculus. J Neurophysiol 48: 338–350

  2. 2.

    Arnold DB, Robinson DA (1997) The oculomotor integrator. Testing a neural network model. Exp Brain Res 113: 57–74

  3. 3.

    Baloh RW, Sharma S, Moskowitz H, Driffith R (1979) Effect of alcohol and marijuana on eye movements. Aviat Space Environ Med 50: 18–23

  4. 4.

    Barton JJS, Sharpe JA, Raymond JE (1995) Retinotopic and directional deficits in motion discrimination in humans with cerebral lesions. Ann Neurol 37: 665–675

  5. 5.

    Büttner-Ennever JA (2005) The extraocular motor nuclei: organization and functional neuroanatomy. Prog Brain Res 151: 95–125

  6. 6.

    Büttner-Ennever JA, Horn AKE (1996) Pathways from cell groups of the paramedian tracts to the flocular region. Ann NY Acad Sci 781: 532–540

  7. 7.

    Büttner-Ennever JA, Horn AKE, Schmidtke K (1989) Cell groups of the medial longitudinal fasciculus and paramedian tracts. Rev Neurol 145: 533–539

  8. 8.

    Büttner-Ennever JA, Horn AK, Scherberger H et al. (2001) Motoneurons of twitch and nontwitch extraocular muscle fibers in the abducens, trochlear, and oculomotor nuclei of monkeys. J Comp Neurol 438: 318–335

  9. 9.

    Cannon SC, Robinson DA (1987) Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 57: 1383–1409

  10. 10.

    Carpenter RHS (1991) The visual origins of ocular motility. In: Cronly-Dillon JR (ed) Vision and visual function, vol 8, eye movements. Mac-Millan Press, London, pp 1–10

  11. 11.

    Cheron G, Godaux E (1987) Disabling of the oculomotor neural integrator by kainic acud injections in the preopositus-vestibular complex of the cat. J Physiol 394: 267–290

  12. 12.

    Collins CC (1975) The human oculomotor control system. In: Lennerstrand G, Bach-y-Rita P (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon, Oxford, pp 145–180

  13. 13.

    Crawford JD, Cadera W, Vilis T (1991) Generation of torsional and vertical eye position signals by the interstitial nucleus of Cajal. Science 252: 1551–1553

  14. 14.

    Evinger LC, Fuchs AF, Baker R (1977) Bilateral lesions of the medial longitudinal fasciculus in monkeys: effects on horizontal and vertical components of voluntary and vestibular induced eye movements. Exp Brain Res 28: 1–20

  15. 15.

    Fukushima K, Kaneko CRS (1995) Vestibular integration in the oculomotor system. Neurosci Res 22: 249–258

  16. 16.

    Gamlin PD, Gnadt JW, Mays LE (1989) Abducens internuclear neurons carry an inappropriate signal for ocular convergence. J Neurophysiol 22: 70–81

  17. 17.

    Gamlin PD, Gnadt JW, Mays LE (1989) Lidocaine induced internuclear ophthalmoplegia: effects on convergence and conjugate eye movements. J Neurophysiol 62: 82–95

  18. 18.

    Garbutt S, Han Y, Kumar AN et al. (2003) Vertical optokinetic nystagmus and saccades in normal human subjects. Invest Ophthalmol Vis Sci 44: 3833–3841

  19. 19.

    Goebel HH, Komatsuzaki A, Bender MB et al. (1971) Lesions of the pontine tegmentum and conjugate gaze paralysis. Arch Neurol 24: 431–440

  20. 20.

    Herishanu Y, Osimand A, Louzoun Z (1982) Unidirectional gaze paretix nystagmus induced by phenytoin intoxication. Am J Ophthalmol 94: 122–123

  21. 21.

    Huerta MF, Kass JH (1990) Supplementary eye fields as defined by intracortical microstimulation: connections in macaques. J Comp Neurol 293: 299–330

  22. 22.

    Jacobs RJ (1979) Visual resolution and contour interaction in the fovea and periphery. Vis Res 19: 1187–1195

  23. 23.

    Jen JC, Chan WM, Mosley TM (2004) Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 304: 1509–1513

  24. 24.

    Leigh J, Zee DS (1999) Neurology of eye movements, 3rd edn. University Press, Oxford, p 104

  25. 25.

    Leigh JR, Zee DS (2006) The neurology of eye movements, 4th edn. Oxford University Press, New York

  26. 26.

    Mays LE, Porter JD (1984) Neural control of vergence eye movements: activity of abducens and oculomotor neurons. J Neurophysiol 52: 743–761

  27. 27.

    Mc Farland JL, Fuchs AF (1992) Discharge patterns in nucleus präpositus hypoglossi and adjatent medial vestibular nucleus during horizontal eye movement in behaving macaques. J Neurophysiol 68: 319–332

  28. 28.

    Miller JM, Bockisch CJ, Pavlovski DS (2002) Missing lateral rectus force and absence of medial rectus contraction in ocular convergence. J Neurophysiol 87: 2421–2433

  29. 29.

    Optican LM, Zee DS, Miles FA (1986) Floccular lesions abolish adaptive control of postsaccadic ocular drifts in primates. Exp Brain Res 64: 596–598

  30. 30.

    Pierrot-Deseilligny C, Chain F, Serdaru M et al. (1981) The „one and a half“ syndrome. Electro-oculographic analyses of five cases with deductions about the physiological mechanisms of lateral gaze. Brain 104: 665–699

  31. 31.

    Pierrot-Deseilligny C, Coasguen J, Chain F et al. (1984) Ptine metastasis with dissociated bilateral horizontal gaze paralysis. J Neurol Neurosurg Psychiatry 47: 159–164

  32. 32.

    Ranalli PJ, Sharpe JA (1988) Vertical vestibule-ocular reflex, smooth pursuit and eye head tracking dysfunction in internuclear ophthalmoplegia. Brain 111: 1299–1317

  33. 33.

    Robinson DA (1970) Oculomotor unit behaviour in the monkey. J Neurophysiol 33: 393–404

  34. 34.

    Robinson DA (1979) The purpose of eye movements. Invest Ophthalmol Vis Sci 17: 835–917

  35. 35.

    Segraves MA, Goldberg ME (1987) Functional properties of corticotectal neurons in the monkey’s frontal eye field. J Neurophysiol 58: 1387–1419

  36. 36.

    Selemon LD, Goldmann-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey. J Neurosci 8: 4049–4068

  37. 37.

    Sharpe JA, Troost BT, Dell’Osso LF et al. (1975) Comparative velocities of different types of eye movements in man. Invest Ophthalmol Vis Sci 14: 689–692

  38. 38.

    Stanton GB, Goldberg ME, Bruce CJ (1988) Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in the midbrain and pons. J Comp Neurol 271: 493–506

  39. 39.

    Steffen H, Rauterberg-Ruland I, Breitbach N et al. (1998) Familial congenital horizontal gaze paralysis and kyphoscoliosis. Neuropediatrics 29: 220–222

  40. 40.

    Zee DS, Hain T, Carl JR (1987) Abduction nystagmus in internuclear ophthalmoplegia. Ann Neurol 21: 383–388

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steffen, H. Topodiagnostik supranukleärer Augenbewegungsstörungen. Ophthalmologe 103, 977–990 (2006). https://doi.org/10.1007/s00347-006-1423-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-006-1423-7

Schlüsselwörter

Keywords

Navigation