Skip to main content
Log in

Esteraseaktivität eines organotypischen humanen Kornea-Konstrukts (HCC) als In-vitro-Modell für Permeationsuntersuchungen

Originalien

Esterase activity of human organotypic cornea construct (HCC) as in vitro model for permeation studies

  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Organotypische Hornhautäquivalente werden als In-vitro-Modelle für Arzneistoffabsorptionsuntersuchungen verwendet. Viele ophthalmologische Wirkstoffe werden zur Erhöhung der Bioverfügbarkeit als Ester-Prodrugs eingesetzt. Es wurde die Esteraseaktivität von drei kornealen humanen Zelllinien (Epithel-, Stroma- und Endothelzellen) sowie von exzidierter porciner Kornea, humaner Spenderkornea und einem humanen Kornea-Konstrukt (HCC) untersucht und verglichen.

Die Esteraseaktivität von Zellen und Gewebe wurde unter Verwendung von p-Nitrophenylacetat und Hydrocortisonacetat (HCA) als Esterasesubstrate bestimmt. Vergleichende In-vitro-Permeationsuntersuchungen mit HCA mittels modifizierter Franz-Zellen wurden für porcine Korneae, humane Spenderhornhäute und HCC durchgeführt.

Die kornealen Epithelzellen zeigten die höchste Esteraseaktivität mit geringen Unterschieden zu Keratozyten und Endothelzellen. Die kornealen Gewebe wiesen sehr ähnliche Permeationseigenschaften für HCA auf mit leichten Unterschieden in der Metabolisierungsrate (porcine Kornea > HCC > humane Spenderkornea).

Permeations- und Metabolisierungsuntersuchungen zeigen, dass das In-vitro-Permeationsmodell HCC in der Lage ist, das Ester-Prodrug Hydrocortisonacetat adäquat in Hydrocortison umzusetzen.

Abstract

Organotypic cornea equivalents are used as in vitro models for permeation studies. Many ophthalmic drugs are applied as ester prodrugs to achieve a higher bioavailability. The esterase activity of three corneal human cell lines (epithelial, stromal, endothelial cells) as well as of excised porcine cornea, human donor cornea and human cornea construct (HCC) was investigated and compared.

Esterase activity was determined using p-nitrophenyl acetate and hydrocortisone acetate (HCA) as esterase substrates. Hydrocortisone acetate permeation across porcine cornea, human donor cornea and HCC was studied in vitro using Franz-diffusion cells.

Corneal epithelial cells showed the highest esterase activity and only small differences to keratocytes and endothelial cells were detectable. The permeation barrier properties of the different corneal tissues were very similar in the case of HCA permeation whereas HCA metabolism rates were in the ranking order of porcine cornea > HCC > human donor cornea.

Permeation and metabolism studies indicate that the in vitro permeation model HCC is able to adequately convert hydrocortisone acetate to hydrocortisone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Anand BS, Mitra AK (2002) Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm Res 19:1194–1202

    Google Scholar 

  2. Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, Handa H (1995) An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 36:614–621

    Google Scholar 

  3. Babiole M, Wilhelm F, Schoch C (2001) In vitro permeation of unoprostone isopropyl and its metabolism in the isolated pig eye. J Ocul Pharmacol Ther 17:159–172

    Google Scholar 

  4. Baker JE, Fabrick JA, Zhu KY (1998) Characterization of esterases in malathion-resistant and susceptible strains of the pteromalid parsitoid Anisopteromalus calandrae. Insect Biochemistry and Molecular Biology 28:1039–1050

    Google Scholar 

  5. Bednarz J, Teifel M, Friedl P, Engelmann K (2000) Immortalization of human corneal endothelial cells using electroporation protocol optimized for human corneal endothelial and human retinal pigment epithelial cells. Acta Ophthalmol Scand 78:130–136

    Google Scholar 

  6. Bertelmann E, Knapp S, Rieck P, Keipert S, Hartmann C, Pleyer U (2003) Transcorneal-paracorneal penetration route for topical application of drugs to the eye. Mycophenolate mofetil as a model substance. Ophthalmologe 100:696–701

    Google Scholar 

  7. Böhnke M (1991) Corneal preservation in organ culture. Current Opinion in Ophthalmology 2:432–442

    Google Scholar 

  8. Burstein NL, Anderson JA (1985) Corneal penetration and ocular bioavailability of drugs. J Ocular Pharmacol 1:309–326

    Google Scholar 

  9. Chang J, Basu SK, Lee VHL (2000) Air-interface condition promotes the formation of tight corneal epithelial cell layers for drug transport studies. Pharm Res 17:670–676

    Google Scholar 

  10. Coupland SE, Penfold PL, Billson FA (1994) Hydrolases of anterior segment tissues in the normal human, pig and rat eye: a comparative study. Graefes Arch Clin Exp Ophthalmol 232:182–191

    Google Scholar 

  11. Doane MG, Jensen AD, Dohlmann CH (1978) Penetration routes of topically applied eye medications. Am J Ophthalmol 85:383–386

    Google Scholar 

  12. Goskonda VR, Khan MA, Hutak CM, Reddy IK (1999) Permeability characteristics of novel mydriatic agents using an in vitro cell culture model that utilizes SIRC rabbit corneal cells. J Pharm Sci 88:180–184

    Google Scholar 

  13. Griffith M, Osborne R, Munger R, Xiong X, Doillon CJ, Laycock NL, Hakim M, Song Y, Watsky MA (1999) Functional human corneal equivalents constructed from cell lines. Science 286:2169–2172

    Google Scholar 

  14. Kawazu K, Shiono H, Tanioka H, Ota A, Ikuse T, Takashina H, Kawashima Y (1998) Beta adrenergic antagonist permeation across cultured rabbit corneal epithelial cells grown on permeable supports. Curr Eye Res 17:125–131

    Google Scholar 

  15. Lee VH (1983) Esterase activities in adult rabbit eyes. J Pharm Sci 72:239–244

    Google Scholar 

  16. Lee VH, Morimoto KW, Stratford RE (1982) Esterase distribution in the rabbit cornea and its implications in ocular drug bioavailability. Biopharm Drug Dispos 3:291–300

    Google Scholar 

  17. Minami Y, Sugihara H, Oono S (1993) Reconstruction of cornea in threedimensional collagen gel matrix culture. Invest Ophthalmol Vis Sci 34:2316–2324

    Google Scholar 

  18. Nakamura M, Shirasawa E, Hikida M (1993) Characterization of esterases involved in the hydrolysis of dipivefrin hydrochloride. Ophthalmic Res 25:46–51

    Google Scholar 

  19. Offord EA, Sharif NA, Mace K, Tromvoukis Y, Spillare EA, Avanti O, Howe WE, Pfeifer AM (1999) Immortalized human corneal epithelial cells for ocular toxicity and inflammation studies. Invest Ophthalmol Vis Sci 40:1091–1101

    Google Scholar 

  20. Rahul V, Dhananjay P, Hongwu G (2001) Transport of acyclovir ester prodrugs through rabbit cornea and SIRC-rabbit corneal epithelial cell line. J Pharm Sci 90:1505–1515

    Google Scholar 

  21. Reichl S, Müller-Goymann CC (2001) Development of an organotypical cornea construct as an in vitro model for permeation studies. Ophthalmologe 98:853–858

    Google Scholar 

  22. Reichl S, Bednarz J, Müller-Goymann CC (2004) Human corneal equivalent as cell culture model for in vitro drug permeation studies. Br J Ophthalmol 88:560–565

    Google Scholar 

  23. Reichl S, Döhring S, Bednarz J, Müller-Goymann CC (2004) Human Cornea Construct HCC—an alternative for In-vitro-permeation studies? A comparison with human donor corneas. Eur J Pharm Biopharm (in press)

  24. Smith VA, El-Rakhawy A, Easty DL (2001) Matrix metalloproteinase 2 activation in cultured corneas. Ophthalmic Res 33:1–6

    Google Scholar 

  25. Schneider AI, Maier-Reif K, Graeve T (1999) Constructing an in vitro cornea from cultures of the three specific corneal cell types. In Vitro Cell Dev Biol Anim 35:515–526

    Google Scholar 

  26. Scholz M, Lin JE, Lee VHL, Keipert S (2002) Pilocarpine permeability across ocular tissues and cell cultures: influence of formulation parameters. J Ocul Pharmacol Ther 18:455–468

    Google Scholar 

  27. Tegtmeyer S, Papantoniou I, Müller-Goymann CC (2001) Reconstruction of an in vitro cornea and its use for drug permeation studies from different formulations containing pilocarpine hydrochloride. Eur J Pharm Biopharm 51:119–125

    Google Scholar 

  28. Tirucherai GS, Dias C, Mitra AK (2003) Corneal permeation of ganciclovir: mechanism of ganciclovir permeation enhancement by acyl ester prodrug design. J Ocul Pharmacol Ther 18:535–548

    Google Scholar 

  29. Toropainen E, Ranta V, Talvitie A, Suhonen P, Urtti A (2001) Culture model of human corneal epithelium for prediction of ocular drug absorption. Invest Ophthalmol Vis Sci 42:2942–2948

    Google Scholar 

  30. Toropainen E, Ranta VP, Vellonen KS, Palmgren J, Talvitie A, Laavola M, Suhonen P, Hamalainen KM, Auriola S, Urtti A (2003) Paracellular and passive transcellular permeability in immortalized human corneal epithelial cell culture model. Eur J Pharm Sci 20:99–106

    Google Scholar 

Download references

Danksagung

Wir danken der Bundesforschungsanstalt für Landwirtschaft, D-Braunschweig, für die Unterstützung mit porcinem Korneamaterial sowie Fa. Nestec (Nestec Ltd., Nestlé Research Center Lausanne) für die Überlassung der CEPI-Zelllinie.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Reichl.

Additional information

Teile des Artikels wurden auf der Jahrestagung der Deutschen Pharmazeutischen Gesellschaft DPhG 2004 in Regensburg präsentiert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, L., Bednarz, J., Müller-Goymann, C.C. et al. Esteraseaktivität eines organotypischen humanen Kornea-Konstrukts (HCC) als In-vitro-Modell für Permeationsuntersuchungen. Ophthalmologe 102, 971–980 (2005). https://doi.org/10.1007/s00347-005-1200-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-005-1200-z

Schlüsselwörter

Keywords

Navigation