Advertisement

Der Ophthalmologe

, Volume 102, Issue 7, pp 688–691 | Cite as

Entwicklung einer epiretinalen Prothese zur Stimulation der humanen Netzhaut

  • M. Feucht
  • T. Laube
  • N. Bornfeld
  • P. Walter
  • M. Velikay-Parel
  • R. Hornig
  • G. RichardEmail author
Leitthema

Zusammenfassung

Degenerationen der äußeren Retina bei Erkrankungen wie Retinitis pigmentosa können über den Verlust der Photorezeptoren zu Erblindung führen. Eine Therapieoption zur visuellen Rehabilitierung besteht derzeit nicht.

In den letzten Jahren wurde eine Retinaprothese entwickelt und die Möglichkeit des Einsatzes in Tierexperimenten und auch beim Menschen getestet.

Beim epiretinalen Implantat werden Bilder der Umwelt von einer Kamera aufgenommen, diese Informationen an einen intraokularen Retinaencoder weitergeleitet und über elektrische Stimulation eines epiretinal platzierten Retinastimulators die Netzhaut gereizt.

Mittels Pars-plana-Vitrektomie werden die Stimulationselektroden als flexible Mikrokontaktfolien epiretinal platziert. Der Schwellwert der Stimulation wird durch Stimulationsereignisse von steigender Amplitude bestimmt. Ferner werden die visuellen Wahrnehmungen des Probanden festgehalten.

Erste Ergebnisse der akuten elektrischen Stimulation mit einem epiretinalen Implantat bei (im Sinne des Gesetzes) blinden Patienten zeigen, dass eine akute epiretinale Stimulation der menschlichen Netzhaut möglich und sicher ist.

Schlüsselwörter

Epiretinale Prothese Netzhautdegeneration Retinitis pigmentosa Intraokularer Retinaencoder Retinastimulator 

Development of an epiretinal prosthesis for stimulation of the human retina

Abstract

Degenerations of the outer retina in retinal diseases such as retinitis pigmentosa lead to blindness due to photoreceptor loss. A therapeutic option for visual rehabilitation is presently not available.

Over the last few years, a retinal prosthesis has been developed and its use has been tested in animal experiments as well as in humans.

With the epiretinal implant images of the environment are taken by a camera, these data are transmitted to an intraocular encoder, and the retina is electrically stimulated by a retinal stimulator placed epiretinally.

The stimulation electrodes are placed as flexible microcontact electrodes by pars plana vitrectomy in an epimacular position. The threshold is determined by stimulations of increasing amplitudes.

Initial results of acute epiretinal stimulation using an epiretinal implant in legally blind patients demonstrate that acute epiretinal stimulation of the human retina is feasible and safe.

Keywords

Epiretinal prosthesis Retinal degeneration Retinitis pigmentosa Intraocular retinal encoder Retinal stimulator 

Notes

Interessenkonflikt:

Keine Angaben

Literatur

  1. 1.
    Berger AS, Tezel TH, Del Priore LV, Kaplan HJ (2003) Photoreceptor transplantation in retinitis pigmentosa: short-term follow-up. Ophthalmology 110:383–391CrossRefPubMedGoogle Scholar
  2. 2.
    Brindley JR, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol (London) 196:479–493Google Scholar
  3. 3.
    Dobelle WH, Mladejovsky MG, Girvin JP (1974) Ar.jpgicial vision for the blind: electrical stimulation of the cortex offers hope for a functional prosthesis. Science 183(123):440–444CrossRefPubMedGoogle Scholar
  4. 4.
    Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29:281–289CrossRefPubMedGoogle Scholar
  5. 5.
    Hambrecht FT, Bak M, Kufta CV, O’Rourke D, Schmidt E (1992) Microstimulation of the visual cortex in a blind human. Proc Fourth Vienna Int Workshop Funct Electrostimulation 4:1–8Google Scholar
  6. 6.
    Humayun MS, de Juan E (1998) Ar.jpgicial vision. Eye 12:605–607CrossRefPubMedGoogle Scholar
  7. 7.
    Humayun MS, de Juan E, Dagnelie G, Greenberg RJ, Propst RH, Phillips DH (1996) Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114:40–46CrossRefPubMedGoogle Scholar
  8. 8.
    Humayun MS, Prince M, de Juan E et al. (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40:143–148PubMedGoogle Scholar
  9. 9.
    Kaplan HJ, Tezel TH, Berger AS, Wolf ML, Del Priore LV (1997) Human photoreceptor transplantation in retinitis pigmentosa. A safety study. Arch Ophthalmol 115:1168–1172CrossRefPubMedGoogle Scholar
  10. 10.
    Laube T, Akguel H, Schanze T, Goertz M, Bolle I, Brockmann C, Bornfeld N (2004) First time successful epiretinal stimulation with active wireless retinal implants in Göttinger minipigs. Invest Ophthalmol Vis Sci 44:4188Google Scholar
  11. 11.
    Lund RD, Ono SJ, Keegan DJ, Lawrence JM (2003) Retinal transplantation: progress and problems in clinical application. J Leukoc Biol 74:151–160CrossRefPubMedGoogle Scholar
  12. 12.
    Majji AB, Humayun MS, Weiland JD, Suzuki S, D’Anna SA, de Juan E (1999) Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 40:2073–2081PubMedGoogle Scholar
  13. 13.
    Richard G, Feucht M, Laube T, Bornfeld M, Walter P, Velikay-Parel M, Hornig R (2004) Visual perceptions in an acute human trial for retina implant technology. Invest Ophthalmol Vis Sci 45:3400Google Scholar
  14. 14.
    Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 44:5355–5361CrossRefPubMedGoogle Scholar
  15. 15.
    Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci 44:5362–5369CrossRefPubMedGoogle Scholar
  16. 16.
    Santos A, Humayun MS, de Juan E et al. (1997) Preservation of the inner retina in retinitis pigmentosa: a morphometric analysis. Arch Ophthalmol 115:511–515CrossRefPubMedGoogle Scholar
  17. 17.
    Stone JL, Barlow WE, Humayun MS et al. (1992) Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol 110:1634–1639CrossRefPubMedGoogle Scholar
  18. 18.
    Walter P, Szurman P, Vobig M et al. (1999) Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 19:546–552CrossRefPubMedGoogle Scholar
  19. 19.
    Zrenner E, Miliczek KD, Gabel VP et al. (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29:269–328CrossRefPubMedGoogle Scholar
  20. 20.
    Zrenner E (2002) Will retinal implants restore vision? Science 295:1022–1025CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  • M. Feucht
    • 1
  • T. Laube
    • 2
  • N. Bornfeld
    • 2
  • P. Walter
    • 3
  • M. Velikay-Parel
    • 4
  • R. Hornig
    • 5
  • G. Richard
    • 1
    • 6
    Email author
  1. 1.AugenklinikUniversität HamburgGermany
  2. 2.AugenklinikUniversität EssenGermany
  3. 3.AugenklinikUniversität AachenGermany
  4. 4.Klinik für Augenheilkunde und OptometrieUniversität WienÖsterreich
  5. 5.IIP-Technologies GmbHBonnGermany
  6. 6.Poliklinik und Klinik für AugenheilkundeUniversitätsklinikum EppendorfHamburgGermany

Personalised recommendations