Skip to main content
Log in

Mechanismen der Neuroprotektion bei Glaukomen

Mechanisms of neuroprotection against glaucoma

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Das Ziel der Neuroprotektion in der Glaukomtherapie ist der Einsatz von Wirkstoffen, die die Apoptose der retinalen Ganglienzellen (RGZ) verhindern bzw. verzögern und die Regeneration bereits geschädigter Zellen fördern. Im folgenden Beitrag werden die Mechanismen des Zelluntergangs der RGZ und der Stand der neuroprotektiven In-vivo-Studien sowie Untersuchungen an Zellkulturen und im Tierversuch erörtert. In der Ätiopathogenese des primär chronischen Offenwinkelglaukoms (PCOWG) werden vor allem ein erhöhter IOD und vaskuläre Funtionsstörungen am Auge diskutiert. Weiterhin werden die Mechanismen der axonschädigenden Wirkung der Ischämie erläutert und hieraus resultierende mögliche neuroprotektive Wirkmechanismen dargestellt (Na+- bzw. Ca2+-Kanalblocker, Rolle reaktiver Astrozyten). Der Ersatz axonaler Überlebensfaktoren und hier besonders die Rolle des im Gehirn gebildeten neurotrophen Faktors werden beschrieben. Ebenso spielt die Glutamatexzitotoxizität eine Rolle im glaukomatösen, anterograden RGZ-Untergang. Hiermit zusammenhängende Fragestellungen und mögliche Therapieansätze werden erörtert. Die drei Phasen der Apoptosekaskade und die Schlüsselrolle der Mitochondrien bei der insultinduzierten Apoptose werden ebenso berücksichtigt, wie die noch relativ unerforschte Möglichkeit der RGZ-Regeneration. Schlussendlich werden Perspektiven der neuroprotektiven Therapie bei PCOWG dargelegt.

Abstract

The goal of neuroprotection in glaucoma treatment is to employ agents that prevent or delay apoptosis of retinal ganglion cells (RGC) and facilitate regeneration of already damaged calls. The following contribution discusses the mechanisms of RGC death and current status of neuroprotective in vivo studies and investigations on cell cultures and animal models. Discussions on the etiopathogenesis of PCOAG center on elevated IOP and ocular disorders of vascular function. The mechanisms of axonal damage induced by ischemia are explained and the resultant possible neuroprotective effect mechanisms are discussed (Na+ or Ca2+ channel blockers, role of reactive astrocytes). Substitution of axonal survival factors and especially the role of BDNF are described. Glutamate excitotoxicity also plays a role in glaucomatous antegrade RGC death. Relevant questions and possible therapeutic approaches are discussed. The three phases of apoptosis cascade and the key role of mitochondria in the insult-induced apoptosis are considered as well as the still relatively unexplored possibilities of RGC regeneration. Finally, perspectives of neuroprotective treatment of PCOAG are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Baksy KB (1984) Spasm of the retinal vessels in association with unstable angina pectoris. Chest 86:55

    Google Scholar 

  2. Blessig E, Amburger N (1910) Ein Fall von schwerer Flimmer-Migräne mit retinalen Angiospasmen. Sonderabd St Petersburger Med Wochenschr 45:1–15

    Google Scholar 

  3. Buys YM, Trope GE, Tatton WG (1995) Deprenyl increases the survival of rat retinal ganglion cells after optic nerve crush. Curr Eye Res 14:119

    CAS  PubMed  Google Scholar 

  4. Chaudhary P, Ahmed F, Sharma SC (1998) MK801: A neuroprotectant in rat hypertensive eyes. Brain Res 792:154

    Article  CAS  PubMed  Google Scholar 

  5. Chen ST, Gentleman SM, Garey LJ et al. (1996) Distribution of β-amyloid precursor and B-cell lymphoma protooncogene proteins in the rat retina after optic nerve transection or vascular lesion. J Neuropathol Exp Neurol 55:1073

    CAS  PubMed  Google Scholar 

  6. Chidlow G, Schmidt KG, Wood JPM, Osborne NN (2002) Lipoic acid protects the retina against ischaemia/reperfusion. Neuropharmacology 43:1015–1025

    Article  CAS  PubMed  Google Scholar 

  7. Cofman JD, Cohan RA (1981) Vasospasm—Ubiquitous? N Engl J Med 102:780–782

    Google Scholar 

  8. Cui Q, Lu Q, So KF et al. (1999) CNTF, not other trophic factors, promotes axonal regeneration of axotomized retinal ganglion cells in adult hamsters. Invest Ophthalmol Vis Sci 40:760

    CAS  PubMed  Google Scholar 

  9. Drance SM, Douglas GR, Wijsman K, Schulzer M, Britton RJ (1989) Response of blood flow to warm and cold in normal and low tension glaucoma. Graefes Arch Clin Exp Ophthalmol 227:408–412

    CAS  PubMed  Google Scholar 

  10. Dreyer EB, Zurakowski D, Schumer RA et al. (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 114:299

    Google Scholar 

  11. Dyer MA, Cepko CL (2000) Control of Muller glial cell proliferation and activation following retinal injury. Nat Neurosci 3:873

    Article  CAS  PubMed  Google Scholar 

  12. El-Asrar AM, Morse PH, Maimone D et al. (1992) MK-801 protects retinal neurons from hypoxia and the toxicity of glutamate and aspartate. Invest Ophthalmology Vis Sci 33:3463

    CAS  Google Scholar 

  13. Fern R, Ransom BR, Stys PK et al. (1993) Pharmacological protection of CNS white matter during anoxia: Actions of phenytoin, carbamazepine and diazepam. J Pharmacol Exp Ther 266:1549

    CAS  PubMed  Google Scholar 

  14. Fischer D, Pavladis M, Thanos S (2000) Cataractogenic lens injury prevents traumatic ganglion cell death and promotes axonal regeneration both in vivo and in culture. Invest Ophthalmol Vis Sci 41:3943

    CAS  PubMed  Google Scholar 

  15. Flammer J, Gasser P, Prünte C, Yao K (1992) The probable involvement of factors other than intraocular pressure in the pathogenesis of glaucoma. In: Drance SM, Buskirk EM van, Neufeld AH (Hrsg) Pharmacology of Glaucoma. Williams and Wilkins, Baltimore, S 273–283

  16. Flammer J (1994) The vascular concept of glaucoma. Surv Ophthalmol 38 [Suppl]:S3

    Article  PubMed  Google Scholar 

  17. Flammer J, Haefliger IO, Orgul S et al. (1999) Vascular dysregulation: A principal risk factor for glaucoma. J Glaucoma 8:2–12

    Google Scholar 

  18. Gao H, Qiao X, Hefti F et al. (1997) Elevated mRNA expression of brain-derived neurotrophic factor in retinal ganglion cell layer after optic nerve injury. Invest Ophthalmol Vis Sci 38:1840

    CAS  PubMed  Google Scholar 

  19. Gasser P, Flammer J (1987) Influence of vasospasm on visual function. Doc Ophthalmol 66:3–18

    CAS  PubMed  Google Scholar 

  20. Gasser P, Flammer J (1991) Blood cell velocity in the nailfold capillaries of patients with normal tension or high tension glaucoma and of healthy controls. Am J Ophthalmol 111:585–588

    CAS  PubMed  Google Scholar 

  21. Gasser P, Meienberg O (1991) Finger microcirculation in migraine—a videomicroscopic study of nailfold capillaries. Eur Neurol 31:168–171

    CAS  PubMed  Google Scholar 

  22. Haefliger IO, Zschauer A, Anderson DR (1994) Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. Invest Ophthalmol Vis Sci 35:991–997

    CAS  PubMed  Google Scholar 

  23. Hernandez MR, Pena JD (1997) The optic nerve head in glaucomatous optic neuropathy. Arch Ophthalmol 115:389

    CAS  PubMed  Google Scholar 

  24. Isenmann S, Wahl C, Krajewski S et al. (1997) Up-regulation of Bax protein in degenerating retinal ganglion cells precedes apoptotic cell death after optic nerve lesion in the rat. Eur J Neurosci 9:1763

    CAS  PubMed  Google Scholar 

  25. Kermer P, Klocker N, Labes M et al. (2000) Insulin-like growth factor-1 protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 in vivo. J Neurosci 20:2

    CAS  PubMed  Google Scholar 

  26. Kiel JW, Shepard AP (1992) Autoregulation of choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 33:2399–2410

    CAS  PubMed  Google Scholar 

  27. Klocker N, Cellerino A, Bahr M (1998) Free radical scavenging and inhibition of nitric oxide synthase potentiates the neurotrophic effects of brain-derived neurotrophic factor on axotomized retinal ganglion cells in vivo. J Neurosci 18:1038

    CAS  PubMed  Google Scholar 

  28. Levin LA, Schlamp CL, Spieldoch RL et al. (1997) Identification of the bcl-2 family of genes in the rat retina. Invest Ophthalmol Vis Sci 38:2545

    CAS  PubMed  Google Scholar 

  29. Lu DC, Rabizadeh S, Chandra S et al. (2000) A second cytotoxic proteolytic peptide derived from amyloid β-protein precursor. Nat Med 4:397

    Google Scholar 

  30. Mansour-Robaey S, Clarke DB, Wang YC et al. (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci USA 91:1632

    CAS  PubMed  Google Scholar 

  31. Mittag T, Danias J, Pohorenec G et al. (2000) Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 41:3451

    CAS  PubMed  Google Scholar 

  32. Morin PJ, Abraham CR, Amaratunga A et al. (1993) Amyloid precursor protein is synthesized by retinal ganglion cells, rapidly transported to the optic nerve plasma membrane and nerve terminals, and metabolized. J Neurochem 61:464

    CAS  PubMed  Google Scholar 

  33. Moriya S, Sugiyama T, Shimizu K et al. (1992) Low tension glaucoma and endothelin (ET1). Folia Ophthalmol Jpn 43:554–559

    Google Scholar 

  34. Morrison RS, Wenzel HJ, Kinoshita Y et al. (1996) Loss of the p53 tumor suppressor gene protects neurons from kainateinduced cell death. J Neurosci 16:1337

    CAS  PubMed  Google Scholar 

  35. Netland PA, Chaturvedi N, Dreyer EB (1993) Calcium channel blockers in the management of low tension and open-angle glaucoma. Am J Ophthalmol 115:608–613

    CAS  PubMed  Google Scholar 

  36. Neufeld AH, Hernandez MR, Gonzalez M (1997) Nitric oxide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol 115:497

    CAS  PubMed  Google Scholar 

  37. Nork MT, Poulsen GL, Nickells RW et al. (2000) Protection of ganglion cells in experimental glaucoma by laser photocoagulation. Arch Ophthalmol 118:1242

    CAS  PubMed  Google Scholar 

  38. Osborne NN, Chidlow G, Wood JPM, Schmidt KG, Casson R, Melena J (2001) Expectations in the treatment of retinal diseases: neuroprotection. Curr Eye Res 22:321–332

    Article  CAS  PubMed  Google Scholar 

  39. Pease ME, McKinnon SJ, Quigley HA et al. (2000) Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci 41:764

    CAS  PubMed  Google Scholar 

  40. Phelps CD, Corbett JJ (1985) Migraine and low tension glaucoma. A case control study. Invest Ophthalmol Vis Sci 26:1105–1108

    CAS  PubMed  Google Scholar 

  41. Pugazhenthi S, Nesterova A, Sable C et al. (2000) Akt/protein kinase B upregulates Bcl-2 expression through cAMP response element-binding protein. J Biol Chem 275:10761

    Article  CAS  PubMed  Google Scholar 

  42. Quigley HA, Nickells RW, Kerrigan LA et al. (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 36:774

    CAS  PubMed  Google Scholar 

  43. Ridet JL, Malhotra SK, Privat A et al. (1997) Reactive astrocytes: Cellular and molecular cues to biological function. Trends Neurosci 20:570

    Article  CAS  PubMed  Google Scholar 

  44. Rosenbaum DM, Rosenbaum PS, Gupta H et al. (1998) The role of the p53 protein in the selective vulnerability of the inner retina to transient ischemia. Invest Ophthalmol Vis Sci 39:2132

    CAS  PubMed  Google Scholar 

  45. Sattler R, Xiong Z, Lu WY et al. (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845

    Article  CAS  PubMed  Google Scholar 

  46. Sawada A, Kitazawa Y, Yamamoto T et al. (1996) Prevention of visual field defect progression with brovincamine in eyes with normal-tension glaucoma. Ophthalmology 103:283

    CAS  PubMed  Google Scholar 

  47. Schmidt KG, Mittag TW, Pavlovic S, Hessemer V (1996) Influence of physical exercise and nifedipine on ocular pulse amplitude. Graefes Arch Clin Exp Ophthalmol 234:527–532

    Google Scholar 

  48. Schmidt KG, v Rückmann A, Geyer O, Mittag TW (1997) Einfluß des Nifedipins auf die okuläre Pulsamplitude bei Normaldruckglaukom. Klin Monatsbl Augenheilkd 210:355–359

    CAS  PubMed  Google Scholar 

  49. Schmidt KG, v Rückmann A, Mittag TW, Hessemer V, Pillunat LE (1997) Reduced ocular pulse amplitude in low-tension glaucoma is independent of vasospasm. Eye 11:485–488

    PubMed  Google Scholar 

  50. Schmidt KG, Mittag TW (1998) Ein vasodilatativer Therapieansatz bei Normaldruckglaukom. In: Schmidt KG (Hrsg) Glaukom—Aktuelle Diagnostik und Therapie. Ad manum medici, München, S 47–56

  51. Schmidt KG, v Rückmann A, Mittag TW (1998) Okuläre Pulsamplitude bei okulärer Hypertension und verschiedenen Glaukomformen. Ophthalmologica 212:5–10

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt KG (1999) Einfluss antiglaukomatöser Substanzen auf die okuläre Perfusion. In: Pillunat LE, Böhm A, Schmidt KG (Hrsg) Fortbildung Glaukom, Bd 2. Enke, Stuttgart, S 79–99

  53. Schmidt KG (1999) Antiglaukomatosa und choroidale Perfusion bei primärem und experimentell induziertem Offenwinkelglaukom. In: Schmidt KG, Pillunat LE (Hrsg) Fortbildung Glaukom, Bd 1, Perfusion und Pharmakologie. Enke, Stuttgart, S 39–50

  54. Schmidt KG, Klingmüller V, v Rückmann A, Koch B (2000) Retrobulbäre und chorioidale Hämodynamik bei Hochdruck- und Normaldruckglaukom. In: Schmidt KG, Pillunat LE (Hrsg) Fortbildung Glaukom, Bd 3. Enke, Stuttgart, S 103–114

  55. So KF, Yip HK (1998) Regenerative capacity of retinal ganglion cells in mammals. Vision Res 38:1525

    Article  CAS  PubMed  Google Scholar 

  56. Stroman GA, Stewart WC, Golnik KC, Cure JK, Olinger RE (1995) Magnetic resonance imaging in patients with low tension glaucoma. Arch Ophthalmol 113:168–172

    CAS  PubMed  Google Scholar 

  57. Sucher NJ, Lipton SA, Dreyer EB (1997) Molecular basis of glutamate toxicity in retinal ganglion cells. Vis Res 37:3483

    Article  CAS  PubMed  Google Scholar 

  58. Tatton WG, Chalmers-Redman RME, Elstner M et al. (2000) Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling. J Neural Transm 60 [Suppl]:77

    Google Scholar 

  59. Tatton WG, Chalmers-Redman RME, Podos SM et al. (2001) Maintaining mitochondrial membrane impermeability: An opportunity for new therapy in glaucoma? Surv Ophthalmol 45:5277

    Google Scholar 

  60. Tatton WG, Chalmers-Redman RME, Tatton NA (2001) Apoptosis and anti-apoptosis signaling in glaucomatous retinonpathy. Eur J Ophthalmol 11 [Suppl 2]:S12–22

    PubMed  Google Scholar 

  61. Taylor CP, Meldrum BS (1995) Na+ channels as targets for neuroprotective drugs. Trends Pharmacol Sci 16:309

    Article  CAS  PubMed  Google Scholar 

  62. Tezel D, Hernandez MR, Wax M (2000) Immunostaining of heat shock proteins in the retina and optic nerve head of human glaucomatous eyes. Arch Ophthalmol 118:511

    CAS  PubMed  Google Scholar 

  63. Vorwerk CK, Hyman BT, Miller JW et al. (1997) The role of neuronal and endothelial nitric oxide synthase in retinal excitotoxicity. Invest Ophthalmol Vis Sci 38:2038

    CAS  PubMed  Google Scholar 

  64. Wen R, Chang T, Li Y et al. (1996) Alpha-2-adrenergic agonists induce basic fibroblast growth factor expression in photoreceptors in vivo and ameliorate light-damage. J Neurosci 16:5986

    CAS  PubMed  Google Scholar 

  65. Wolfe MS et al. (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398:513

    Article  CAS  PubMed  Google Scholar 

  66. Wood JPM, Schmidt KG, Melena J, Chidlow G, Allmeier H, Osborne NN (2003) The β-adrenoceptor antagonists metipranolol and timolol are retinal neuroprotectants: comparison with betaxolol. Exp Eye Res 76:505–516

    Article  CAS  PubMed  Google Scholar 

  67. Yancey CM, Linsenmeier RA (1989) Oxygen distribution and consumption in the cat retina at increased intraocular pressure. Invest Ophthalmol Vis Sci 30:600–611

    CAS  PubMed  Google Scholar 

  68. Yoles E, Muller S, Schwartz M (1997) NMDA-receptor antagonist protects neurons from secondary degeneration after partial optic nerve crush. J Neurotrauma 14:665 (published erratum appears in J Neurotrauma 1999;16:345)

    Google Scholar 

  69. Yoles E, Schwartz M (1998) Elevation of intraocular glutamate levels in rats with partial lesion of the optic nerve. Arch Ophthalmol 116:906

    CAS  PubMed  Google Scholar 

  70. Yoles E, Wheeler LA, Schwartz M (1999) Alpha2-adrenoreceptor agonists are neuroprotective in a rat model of optic nerve degeneration. Invest Ophthalmol Vis Sci 40:65

    CAS  PubMed  Google Scholar 

  71. Zafra F, Lindholm D, Castren E et al. (1992) Regulation of BDNF and NGF mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci 12:4793

    CAS  PubMed  Google Scholar 

  72. Zamora MR, O’Brien RF, Rutherford RB, Weil JV (1990) Serum endothelin I concentrations and cold provocation in primary Raynaud’s phenomenon. Lancet 336:144–147

    Article  Google Scholar 

  73. Zhang C, Takahashi K, Lam TT et al. (1994) Effects of basic fibroblast growth factor in retinal ischemia. Invest Ophthalmol Vis Sci 35:3163

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mittag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittag, T., Schmidt, KG. Mechanismen der Neuroprotektion bei Glaukomen. Ophthalmologe 101, 1076–1086 (2004). https://doi.org/10.1007/s00347-004-1130-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-004-1130-1

Schlüsselwörter

Keywords

Navigation