Skip to main content
Log in

Neuroprotektion bei Glaukom bleibt ein Konzept

Neuroprotection against glaucoma remains a concept

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Nach Schätzung der WHO sind etwa 105 Millionen Menschen weltweit vom Glaukom betroffen. Das Glaukom kann als progressive Optikoneuropathie mit struktureller Schädigung des Sehnervenkopfs und Untergang retinaler Ganglienzellen definiert werden. Obwohl ein erhöhter IOD für das Glaukom als ursächlich gilt, führt eine Drucksenkung häufig nicht zur Besserung. Aus diesem Grund werden noch andere ätiologische Faktoren vermutet. Diese sollen im folgenden Beitrag aufgezeigt und die Rolle von Neuroprotektiva bei Glaukom diskutiert werden. Das für das Glaukom spezifische Muster des Ganglienzelluntergangs lässt vermuten, dass bestimmte Ganglienzellen empfindlicher sein könnten als andere. Die Theorie des „kumulativen Schadens“ beinhaltet hier die Hypothese, dass der verzögerte Beginn vieler neurodegenerativer Erkrankungen, wie Glaukom, M. Alzheimer oder M. Parkinson, auf die altersabhängige Kumulation toxischer Substanzen in den Ganglienzellen zurückzuführen ist. Dahingegen beruht die Theorie der „singulären Schädigung“ auf der Vermutung, dass sich bestimmte Ganglienzellen durch die Expression sogenannter „Mutant-response“-Gene in einem Zustand reduzierter Homöostase befinden. Überlegenswerte Therapieansätze, die hinsichtlich ihres Nebenwirkungsprofils und ihrer Wirksamkeit im Tierversuch in Frage kommen, werden dargestellt.

Abstract

According to estimates made by WHO, approximately 105 million people are affected worldwide by glaucoma. This can be defined as progressive optic neuropathy with structural damage of the optic nerve head and death of retinal ganglion cells. Although elevated IOP is considered responsible for glaucoma, lowering the pressure often does not result in improvement. For this reason, other etiological factors are presumed, which are presented in the following contribution. The role of neuroprotective agents in the treatment of glaucoma is discussed. The pattern of ganglion cell death specific to glaucoma seems to suggest that certain ganglion cells could be more sensitive than others. The theory of “cumulative damage” in this case includes the hypothesis that the delayed onset of many neurodegenerative diseases such as glaucoma, Alzheimer’s disease, or Parkinson’s disease can be attributed to the age-related accumulation of toxic substances in the ganglion cells. On the contrary, the theory of “singular damage” is based on the assumption that certain ganglion cells are in a state of reduced homeostasis caused by the expression of so-called mutant response genes. Therapeutic approaches worthy of consideration based on their side effect profile and efficacy in animal trials, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Clarke G, Collins RA, Leavitt BR, Andrews DF, Hayden MR, Lumsden CJ, McInnes RR (2000) A one-hit model of cell death in inherited neuronal degenerations. Nature 406:195–199

    Article  CAS  PubMed  Google Scholar 

  2. Donello JE, Padillo E, Webster ML, Wheeler LA, Gil DW (2001) α2-Adrenoceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischaemia. J Pharmacol Exp Ther 296:216–223

    CAS  PubMed  Google Scholar 

  3. Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 114:299–305

    Google Scholar 

  4. Flammer J, Orgul S (1998) Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res 17:267–289

    Article  CAS  PubMed  Google Scholar 

  5. Gupta N, Weinreb RN (1997) New definitions of glaucoma. Curr Opin Ophthalmol 8:38–41

    CAS  PubMed  Google Scholar 

  6. Kass MA, Gordon MO (2000) Intraocular pressure and visual field progression in open-angle glaucoma. Am J Ophthalmol 130:490–491

    Article  CAS  PubMed  Google Scholar 

  7. Kerrigan LA, Zack DJ, Quigley HA, Smith SD, Pease ME (1997) TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol 115:1031–1035

    Google Scholar 

  8. Leske MC, Connell AM, Wu SY, Hyman LG, Schachat AP (1995) Risk factors for open-angle glaucoma. The Barbados Eye Study. Arch Ophthalmol 113:918–924

    CAS  PubMed  Google Scholar 

  9. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    CAS  PubMed  Google Scholar 

  10. Mansour-Robaey S, Clarke DB, Wang Y-C, Bray GM, Aguayo AJ (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci U S A 91:1632–1636

    CAS  PubMed  Google Scholar 

  11. Morgan JE (1994) Selective cell death in glaucoma: does it really occur? Br J Ophthalmol 78:875–880

    CAS  PubMed  Google Scholar 

  12. Nash MS, Osborne NN (1999) Assessment of Thy-1 mRNA levels as an index of retinal ganglion cell damage. Invest Ophthalmol Vis Sci 40:1293–1298

    CAS  PubMed  Google Scholar 

  13. Neal MJ, Cunningham JR, Hutson PH, Hogg J (1994) Effects of ischaemia on neurotransmitter release from the isolated retina. J Neurochem 62:1025–1033

    CAS  PubMed  Google Scholar 

  14. Osborne NN, Cazevieille C, Carvalho A, Larsen AK, DeSantis L (1997) In vivo and in vitro experiments show that betaxolol is a retinal neuroprotective agent. Brain Res 751:113–123

    Article  CAS  PubMed  Google Scholar 

  15. Osborne NN, Chidlow G, Nash MS, Wood JPM (1999) The potential of neuroprotection in glaucoma treatment. Curr Opin Ophthalmol 10:82–92

    Article  CAS  PubMed  Google Scholar 

  16. Osborne NN, DeSantis L, Bae JH, Ugarte M, Wood JPM, Nash MS, Chidlow G (1999) Topically applied betaxolol attenuates NMDA-induced toxicity to ganglion cells and the effects of ischaemia to the retina. Exp Eye Res 69:331–342

    Article  CAS  PubMed  Google Scholar 

  17. Osborne NN, Ugarte M, Chao M, Chidlow G, Bae JH, Wood JPM, Nash MS (1999) Neuroprotection in relation to retinal ischaemia and relevance to glaucoma. Surv Ophthalmol 43 [suppl 1]:S102–S128

    Google Scholar 

  18. Osborne NN, Wood JPM, Chidlow G, Bae JH, Melena J, Nash MS (1999) Ganglion cell death in glaucoma: what do we really know? Br J Ophthalmol 83:980–986

    CAS  PubMed  Google Scholar 

  19. Osborne NN, DeSantis L, Melena J, Chidlow G, Wood JPM (2000) Ophthalmic Clin North Am 13:123–130

    Google Scholar 

  20. Osborne NN, Melena J, Chidlow G, Wood JPM (2001) A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head; implications for the treatment of glaucoma. Br J Ophthalmol 85:1252–1259

    Article  CAS  PubMed  Google Scholar 

  21. Osborne NN, Casson RJ, Wood JPM, Graham M, Melena J (2004) Retinal ischaemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147

    Article  PubMed  Google Scholar 

  22. Quigley HA (1995) Ganglion cell death in glaucoma: pathology recapitulates ontogeny. Aust N Z J Ophthalmol 23:85–91

    CAS  PubMed  Google Scholar 

  23. Quigley HA (1999) Neuronal death in glaucoma. Prog Retin Eye Res 18:39–57

    Article  CAS  PubMed  Google Scholar 

  24. Raffray M, Cohen GM (1997) Apoptosis and necrosis in toxicology: a continuum or distinct modes of death? Gen Pharmacol 75:153–177

    Article  CAS  Google Scholar 

  25. Ritch R (2000) Neuroprotection: is it already applicable to glaucoma therapy? Curr Opin Ophthalmol 11:78–84

    Article  CAS  PubMed  Google Scholar 

  26. Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J et al. (1991) Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol 109:1090–1095

    CAS  PubMed  Google Scholar 

  27. Tielsch (1996) The epidemiology and control of open angle glaucoma: a population based perspective. Annu Rev Public Health 17:121–136

    CAS  PubMed  Google Scholar 

  28. Wood JPM, Schmidt KG, Melena J, Chidlow G, Allmeier H, Osborne NN (2003) The β-adrenoceptor antagonists metipranolol and timolol are retinal neuroprotectants: comparison with betaxolol. Exp Eye Res 76:505–516

    Article  CAS  PubMed  Google Scholar 

  29. World Health Organisation (1997) Blindness and visual disability: major causes worldwide. WHO, Geneva

    Google Scholar 

  30. Yamamoto T, Kitazawa Y (1998) Vascular pathogenesis of normal-tension glaucoma: a possible pathogenetic factor, other than intraocular pressure, of glaucomatous optic neuropathy. Prog Retin Eye Res 17:127–143

    Article  CAS  PubMed  Google Scholar 

  31. Yoles E, Wheeler LA, Schwartz M (1999) α2-adrenoceptor agonists are neuroprotective in a rat model of optic nerve degeneration. Invest Ophthalmol Vis Sci 40:65–73

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Osborne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osborne, N.N., Schmidt, KG. Neuroprotektion bei Glaukom bleibt ein Konzept. Ophthalmologe 101, 1087–1092 (2004). https://doi.org/10.1007/s00347-004-1129-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-004-1129-7

Schlüsselwörter

Keywords

Navigation