Skip to main content
Log in

Minoranomalien der Hornhaut bei der murinen Trisomie 16

Corneal anomalies in murine trisomy 16

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Das Down-Syndrom ist die häufigste beim Menschen bekannte Trisomie (1:700). Deshalb sind Untersuchungen an Tiermodellen zur Klärung der Ätiopathogenese von klinischer Relevanz. Allerdings wurden bislang keine Hornhautveränderungen bei der murinen Trisomie 16 beschrieben.

Methode

20 Mäusefeten (n=40 Augen) mit einer induzierten Trisomie 16 wurden am 18. Tag post conceptionem lichtmikroskopisch untersucht. Es erfolgte eine standardisierte histopathologische Aufbereitung des Sehorgans.

Ergebnisse

Die Trisomie-16-Mäusefeten wiesen neben systemischen Entwicklungsstörungen Fehlbildungen des Sehorgans (fehlender transitorischer Lidschluss, Katarakt) mit einer hohen Expressivität auf. Es konnten Entwicklungs- und Differenzierungsstörungen der kornealen Epithelzelllagen sowie Gefügestörungen des Stroma corneae als Belege für Minoranomalien der Hornhaut beobachtet werden. Unsere Befunde belegen erstmalig Entwicklungsstörungen der Hornhaut bei Feten mit einer murinen Trisomie 16. Diese könnten bei einem späteren Überleben der Tiere durchaus zu einer Wölbungsanomalie (Keratokonus) geführt haben.

Schlussfolgerung

Mäusefeten mit einer Trisomie 16 entsprechen in wichtigen Befunden dem klinischen Bild des vom Menschen bekannten Down-Syndroms. Entwicklungsstörungen der Lider und der Linse sind Merkmale von hoher, die Hornhauthypoplasie dagegen von geringerer Expressivität.

Abstract

Background

The prevalence of human Down’s syndrome is about 1:700. Investigations using animal models are therefore of clinical relevance for understanding its etiopathogenesis. No corneal changes have been reported with transgenic murine trisomy 16.

Methods

A total of 20 fetal mice (n=40 eyes) with experimentally induced trisomy 16 were investigated from day 18 of pregnancy in order to determine whether visible developmental disorders of the cornea occur. All specimen were investigated microscopically in serial sections.

Results

In addition to disturbances in systemic development, the transgenic mouse fetuses showed high rates of malformation of the eyes. Developmental and differentiation disorders of the corneal epithelial cell layers and structural disturbances of the corneal parenchyma were found. Our findings are the first demonstration of developmental disorders of the cornea in mouse fetuses with trisomy 16. These minor anomalies of the cornea could well have resulted in keratoconus if the animals had survived.

Conclusions

Our findings in transgenic mouse fetuses with trisomy 16 correspond to the clinical pattern of Down’s syndrome in humans. Disturbed development of lids and lenses have a high prevalence, whereas corneal hypoplasia is found less often.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Bacchus C, Sterz H, Buselmaier W (1987) Genesis and systematization of cardiovaskular anomalies and analysis of skeletal malformations in murine trisomy 16 and 19. Human Genet 77:12–22

    CAS  Google Scholar 

  2. Berger CN, Epstein CJ (1989) Delayed thymocyte maturation in the trisomy 16 mouses. J Immunol 143:389–396

    CAS  PubMed  Google Scholar 

  3. Buselmaier W, Bacchus C, Sterz H (1991) Genesis and systematization of cardiovascular anomalies in murine trisomy 16. Prog Clin Biol Res 373:203–214

    CAS  PubMed  Google Scholar 

  4. Colton CA, Yao J, Taffs RE (1991) Abnormal production of interleukin-1 by microglia from trisomy 16 mice. Neurosci Lett 132:270–274

    Article  CAS  PubMed  Google Scholar 

  5. Cox D, Goldblatt D, Epstein CJ (1981) Chromosomal assignment of mouse PRGS: Further evidence for homology between mouse chromosome 16 and human chromosome 21. Am J Hum Genet 33:145

    Google Scholar 

  6. Epstein CJ, Epstein LB, Cox D (1998) Functional implications of gene dosage effects in trisomy 21. Hum Genet 2:155–172

    Google Scholar 

  7. Ewart JL, Auerbach R (1992) Defects in thymocyte differentiation and thymocyte-stromal interactions in the trisomy 16 mouse. Dev Immunol 2:215–226

    CAS  PubMed  Google Scholar 

  8. Fundele R, Winking H, Jägerbauer EM (1987) Influence of mouse trisomy 16 on expression of specific genes. Dev Genetics 8:35–43

    CAS  Google Scholar 

  9. Gearhart JD, Davisson MT, Oster-Granite ML (1986) Autosomal aneuploidy in mice: generation and developmental consequences. Brain Res Bull 16:789–801

    Article  CAS  PubMed  Google Scholar 

  10. Grausz H, Richtsmeier JT, Oster-Granite ML (1991) Morphogenesis of the brain and craniofacial complex in trisomy 16 mice. Prog Clin Biol Res 373:169–188

    CAS  PubMed  Google Scholar 

  11. Hiltgen GG, Markwald RR, Litke LL (1996) Morphogenetic alterations during endocardial cushon development in the trisomy 16 (Down syndrome) mouse. Pediatr Cardiol 17:21–30

    Article  CAS  PubMed  Google Scholar 

  12. Lacey-Casem ML, Oster-Granite ML (1994) The neuropathology of the trisomy 16 mouse. Crit Rev Neurobiol 8:293–322

    CAS  PubMed  Google Scholar 

  13. Lane NL, Balbo A, Stoll J (1994) Long-term intracerebral transplants of fetal hippocampus from mouse trisomy 16, a model for Downs syndrome (Trisomy 21), do not exhibit Alzheimer disease neuropathology by ultrastructural criteria. Tissue Cell 26:477–488

    Article  CAS  PubMed  Google Scholar 

  14. Leffler A, Wedel T, Busch LC (1999) Congenital colonic hypoganglionosis in murine trisomy 16—An animal model for Down’s syndrome. Eur J Pediatr Surg 9:381–388

    CAS  PubMed  Google Scholar 

  15. Lipski DA, Bersu ET (1990) Examination of the eyelid closure defect in trisomy 16 mice. Teratology 42:301–308

    CAS  PubMed  Google Scholar 

  16. Miyabara S, Gropp A, Winking H (1982) Trisomy 16 in the mouse fetuses associated with generalized edema and cardiovasculae and urinary tract anomalies. Teratology 25:369–380

    CAS  PubMed  Google Scholar 

  17. Miyabara S, Sugihara H, Yonemitsu N (1984) Comparative study of phenotypic expression of mico trisomy 16 by different female strains: attempt at an animal model for human trisomy 21. Congenital Anom 24:283–292

    Google Scholar 

  18. Müller W, Heinemann U, Schuchmann S (1997) Impaired Ca-signaling in astrocyts from the Ts 16 mouse model of Down syndrome. Neurosci Lett 223:81–84

    Article  PubMed  Google Scholar 

  19. Naumann GOH (1997) Pathologie des Auges. Springer, Berlin Heidelberg New York Tokyo, S 133–134

  20. Nelson PG, Fitzgerald S, Rapoport SI (1997) Cerebral cortical astroglia from the trisomy 16 mouse, a model for Down syndrome, produce neuronal cholinergic deficits in cell culture. Proc Natl Aca Sci USA 94:12644–12648

    Article  CAS  Google Scholar 

  21. Oster-Granite ML, Baker C, Ozand PT (1983) Neuroanatomic, ocular and audiovestibular malformations in the trisomy 16 mouse. Pediatr Res 17:300

    Google Scholar 

  22. Oster-Granite ML, Gerhart JD, Reeves RH (1986) Neurobiological consequences of trisomy 16 in mice. In: Epstein CJ (ed) The neurobiology of Down syndrome. Raven, New York, pp 137–151

  23. Pei YF, Thodin JA (1971) Electron microscopic study of the development of the mouse corneal epithelium. Invest Ophthalmol 10:811–825

    CAS  PubMed  Google Scholar 

  24. Saltarelli MD, Forloni GL, Oster-Granite ML (1987) Neurochemical characterization of embryonic brain development in trisomy 19 (Ts 19) mice: implications of selective deficits observed for abnormal neuron development in aneuploidy. Dev Genet 8:267–279

    CAS  PubMed  Google Scholar 

  25. Schuchmann S, Heinemann U (2000) Diminished glutathione levels cause spontaneous and mitochondria-mediated cell death in neurons from trisomy 16 mice: A model of Down’s syndrome. J Neurochem 74:1205–1214

    CAS  PubMed  Google Scholar 

  26. Schuchmann S, Müller W, Heidemann U (1998) Alterated Ca signaling and mitochondrial deficiencies in hippocampal neurons of trisomy 16 mice: a model of Down’s syndroma. J Neurosci 18:7216–7231

    CAS  PubMed  Google Scholar 

  27. Shapiro MB, France TD (1985) The ocular features of Down’s syndrome. Am J Ophthalmol 99:659–663

    CAS  PubMed  Google Scholar 

  28. Shetty HU, Holloway HW, Rapoport SI (1995) Capillary gas chromatography combined with ion trap detection for quantitative profiling of polyols in cerebrospinal fluid and plasma. Anal Biochem 224:279–285

    Article  CAS  PubMed  Google Scholar 

  29. Sterz H, Buselmaier W, Bacchus C (1989) Defects of skeletal morphology, density, and structure in mouse fetuses with trisomy 16. Teratology 40:627–639

    CAS  PubMed  Google Scholar 

  30. Tost M, Tost F (1990) Zur Normogenese der Hornhaut und ihrer Beeinflussung durch Cyclophosphamid. Klin Monatsbl Augenheilkd 197:123–127

    CAS  PubMed  Google Scholar 

  31. Webb S, Brown NA, Anderson RH (1997) Cardiac morphology at late fetal stages in the mouse with trisomy 16: consequences for different formation of the atrioventricular junction when compared to humans with trisomy 21. Cardiovasc Res 34:515–525

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Tost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tost, F., Wolfinger, J., Giebel, J. et al. Minoranomalien der Hornhaut bei der murinen Trisomie 16. Ophthalmologe 102, 64–69 (2005). https://doi.org/10.1007/s00347-004-1062-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-004-1062-9

Schlüsselwörter

Keywords

Navigation