Skip to main content
Log in

Akkumulation von Lipidpartikeln in der Bruch-Membran von LDL-Rezeptor-defizienten Mäusen als Modell für die altersbezogene Makuladegeneration

Accumulation of lipid particles in Bruch’s membrane of LDL receptor knockout mice as a model of age-related macular degeneration

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Als pathogenetischer Faktor für die exsudative Form der AMD wird unter anderem die Arteriosklerose als Risikofaktor diskutiert.

Methodik

Wir nutzten ein etabliertes Mausmodell der Aterioskleroseforschung mit einer Defizienz des Low-Density-Lipoprotein (LDL)-Rezeptors. Dieser Rezeptordefekt führt zu erhöhten Plasmacholesterinwerten, die zusätzlich in dieser Studie durch den Fettgehalt der Nahrung modifiziert wurden. Die Plasmacholesterinwerte wurden analysiert und entstandene Bruch-Membranveränderungen mittels Transmissionselektronenmikroskopie untersucht.

Ergebnisse

Die höchsten Cholesterinspiegel wurden bei LDL-Rezeptor-defizienten Mäusen nach der Aufnahme fettreicher Nahrung gefunden. LDL-Rezeptor-defiziente Mäuse nach der Aufnahme von Standardnahrung zeigten hier geringere Werte, jedoch signifikant höhere als die Kontrollmäuse ohne Rezeptordefekt mit und ohne fettreiche Spezialnahrung. Kontrolltiere zeigten futterunabhängig keine sichtbaren Veränderungen der Bruch-Membran. Dagegen wurden in allen Bruch-Membranhistologien von „Knock-out-Mäusen“ membrangebundene transluzente Partikel gefunden. Diese als Lipidpartikel interpretierten Veränderungen zeigten sich verstärkt nach fettreicher Nahrung. Zudem war die Bruch-Membran nach fettreicher Ernährung allgemein verdickt und enthielt zusätzliche nichtmembrangebundene Partikel.

Schlussfolgerungen

Die Modulation der Blutfettwerte in diesem Tiermodell, die zu typischen arteriosklerotischen Gefäßveränderungen führt, zeigte eine Degeneration der Bruch-Membran durch Akkumulation von Lipidpartikeln. Dabei korrelierte die Stärke der Bruch-Membranveränderungen mit der Höhe der Blutcholesterinwerte. Wir halten dieses Modell für geeignet, um weitere Teilaspekte der CNV-Entwicklung zu untersuchen.

Abstract

Background

Atherosclerosis is a suspected risk factor for the development of neovascular age-related macular degeneration (AMD).

Methods

We used a well-established murine knockout model with low-density lipoprotein (LDL) receptor deficiency for atherosclerotic vascular pathogenesis to evaluate changes in Bruch’s membrane due to high cholesterol levels. Blood cholesterol levels were modified by the diet fed (standard rodent diet or high-fat diet western type). Animals were sacrificed and plasma cholesterol levels were determined. Eyes were examined by transmission electron microscopy (TEM).

Results

Plasma total cholesterol levels were highest in LDL receptor-deficient mice after high-fat diet and elevated in LDL receptor-deficient mice after standard diet compared to control mice with and without special high-fat diet. While Bruch’s membranes of control animals did not exhibit any visible changes by TEM even after a high-fat diet, membrane-bound translucent particles were seen in all membranes in knockout mice. The amount of these particles was substantially increased and membranes were thickened in knockout animals following high-fat diet with additional deposits of non-membrane-bound particles.

Conclusion

LDL receptor-deficient mice exhibited a degeneration of Bruch’s membrane with accumulation of lipid particles, which is further increased after fat intake due to elevated blood lipid levels. In our opinion, this animal model is suitable for investigating more aspects in the pathogenesis of neovascular AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Age-Related Eye Disease Study Research Group (2000) Risk factors associated with age-related macular degeneration. A case-control study in the age-related eye disease study: age-related eye study report number 3. Ophthalmology 107:2224–2232

    Article  PubMed  Google Scholar 

  2. Augustin AJ, Dick BH, Koch F, Schmidt-Erfurth U (2002) Correlation of blood glucose control with oxidative metabolites in plasma and vitreous body of diabetic patients. Eur J Ophthalmol 12:94–101

    CAS  PubMed  Google Scholar 

  3. Blumenkranz MS, Russel SR, Robey MG, Kott-Blumenkranz R, Penneys N (1986) Risk factors in age-related maculopathie complicated by choroidal neovascularization. Ophthalmology 96:552–558

    Google Scholar 

  4. Bocan TM, Schifani TA, Gyuton JR (1986) Ultrastructure of human aortic fibrolipid lesion: formation of the atherosclerotic lipid-rich core. Am J Pathol 123:413–424

    CAS  PubMed  Google Scholar 

  5. Boulton M, Foreman D, Williams G, McLeod D (1998) VEGF localization in diabetic retinopathy. Br J Ophthalmol 82:561–568

    CAS  PubMed  Google Scholar 

  6. Christen WG, Glynn RJ, Manson JE, Ajani UA, Buring JE (1996) A prospective study of cigarette smoking and risk of age-related macular degeneration in men. JAMA 276:1147–1151

    CAS  PubMed  Google Scholar 

  7. Campochiaro RA (2000) Retinal and choroidal neovascularization. J Cell Physiol 184:301–310

    Article  CAS  PubMed  Google Scholar 

  8. Chader GJ (2002) Animal models in research on retinal degenerations: past progress and future hope. Vision Res 42:393–399

    Article  PubMed  Google Scholar 

  9. Curcio AC, Millican CL (1999) Basal linear deposits and large drusen are specific for early age-related maculopathy. Arch Ophthalmol 117:329–339

    CAS  PubMed  Google Scholar 

  10. Curcio AC, Millican CL, Bailey T, Kruth HS (2001) Accumulation of cholesterol with age in human Bruch’s membrane. Invest Ophthalmol Vis Sci 42:265–273

    CAS  PubMed  Google Scholar 

  11. Dithmar S, Curcio AC, Le HA, Brown S, Grossniklaus HE (2000) Ultrastructural changes in Bruch’s membrane of apolipoprotein E-deficient mice. Invest Ophthalmol Vis Sci 41:2035–2042

    CAS  PubMed  Google Scholar 

  12. Green WR, Enger C (1993) Age-related macular degeneration histopathologic studies. Ophthalmology 100:1519–1535

    CAS  PubMed  Google Scholar 

  13. Hyman L, Schachat AP, He Q, Leske MC (2000) Hypertension, cardiovascular disease and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group. Arch Ophthalmol 118:351–358

    CAS  PubMed  Google Scholar 

  14. Hyman L, Neborsky R (2002) Risk factors for age-related macular degeneration: an update. Curr Opin Ophthalmol 13:171–175

    Article  PubMed  Google Scholar 

  15. Kliffen M, Lutgens E, Daemen MJ, de Muinck ED, Mooy CM, de Jong PT (2000) The APO(*)E3-Leiden mouse as an animal model for basal laminar deposits. Br J Ophthalmol 84:1415–1419

    Article  CAS  PubMed  Google Scholar 

  16. Kwak N, Okamoto N, Wood JM, Campochiaro PA (2000) VEGF is major stimulator in model of choroidal neovaskularisation. Invest Ophthalmol Vis Sci 41:3158–3164

    CAS  PubMed  Google Scholar 

  17. Miceli MV, Newsome DA, Tate DJ, Sarphie TG (2000) Pathologic changes in the retinal pigment epithelium and Bruch’s membrane of fat-fed atherogenic mice. Curr Eye Res 20:8–16

    Article  CAS  PubMed  Google Scholar 

  18. Mitchell P, Smith W, Attebo K, Wang JJ (1995) Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology 102:1450–1460

    CAS  PubMed  Google Scholar 

  19. Mares-Perlman JA, Brady WE, Klein R, VandenLangenberg GM, Klein BEK, Palta M (1995) Dietry fat and age-related maculopathy. Arch Ophthalmol 113:743–748

    Google Scholar 

  20. Moore DJ, Hussain AA, Marshall J (1995) Age-related variation in the hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci 36:1290–1297

    CAS  PubMed  Google Scholar 

  21. Moore DJ, Clover GM (2001) The effect of age on the macromolecular permeability of human Bruch’s membrane. Invest Ophthalmol Vis Sci 42:2970–2975

    CAS  PubMed  Google Scholar 

  22. Pauleikoff D, Sheraidah G, Marshall J, Bird AC, Wessing A (1994) Biochemische und histochemische Analyse altersabhängiger Lipidablagerungen in der Bruch’schen Membran. Ophthalmologe 91:730–734

    PubMed  Google Scholar 

  23. Sarks JP, Sarks SH, Killingworth MC (1988) Evolution of geographic atrophy of the retinal pigment epithelium. Eye 14:552–577

    Google Scholar 

  24. Seddon JM, Rosner B, Sperduto RD, Yannuzzi L, Haller JA, Blair NP, Willett W (2001) Dietary fat and risk for advanced age-related macular degeneration. Arch Ophthalmol 119:1191–1199

    CAS  PubMed  Google Scholar 

  25. Seddon JM, Willett WC, Speizer FE, Hankinson SE (1996) A prospective study of cigarette smoking and age-related macular degeneration in women. JAMA 276:1141–1146

    CAS  PubMed  Google Scholar 

  26. Sheraidah GS, Steinmetz R, Maguire J, Pauleikoff D, Marshall J, Bird AC (1993) Correlation between lipids extracted from Bruch’s membrane and age. Ophthalmology 100:47–51

    CAS  PubMed  Google Scholar 

  27. Smith W, Mitchell P, Leeder SR (2000) Dietary fat and fish intake and age-related maculopathy. Arch Ophthalmol 118:401–404

    CAS  PubMed  Google Scholar 

  28. Snow K, Seddon J (1999) Do age-related macular degeneration and cardiovascular disease share common antecedents? Ophthalmic Epidemiol 6:125–143

    Article  CAS  PubMed  Google Scholar 

  29. Starita C, Hussain AA, Marshall J (1997) Localization of the site of major resistance to fluid transport in Bruch’s membrane. Invest Ophthalmol Vis Sci 38:762–767

    CAS  PubMed  Google Scholar 

  30. Stone J, Itin A, Alon T, Peèr J, Gnessin H, Ling TC, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced VEGF expression by neuroglia. J Neurosci 15:4738–4747

    CAS  PubMed  Google Scholar 

  31. The Eye Disease Case Control Study Group (1992) Risk factors for neovascular age-related macular degeneration. Arch Ophthalmol 110:1701–1708

    PubMed  Google Scholar 

  32. Tobe T, Ortega S, Luna JD et al (1998) Targeted disruption of the FGF2 Gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 153:1641–1646

    CAS  PubMed  Google Scholar 

  33. Vingerling JR, Dielemans I, Bots ML, Hofman A, Grobbee DE, de Jong PT (1995) Age-related macular degeneration is associated with atherosclerosis. The Rotterdam Study. Am J Epidmiol 142:404–409

    CAS  Google Scholar 

  34. Vingerling JR, Dielemans I, Hofman A (1995) The prevalence of age-related maculopathy in the Rotterdam study. Ophthalmology 102:205–210

    CAS  PubMed  Google Scholar 

  35. Wada M, Ogata N, Otsuji T, Uyama M (1999) Expression of VEGF and its receptor (KDR/flk-1) mRNA in experimental choroidal neovascularization. Curr Eye Res 18:203–213

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Schmidt-Erfurth.

Additional information

Teile des Beitrages wurden auf der Tagung der Deutschen Ophthalmologischen Gesellschaft 2002 vorgetragen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolf, M., Ivandic, B., Winkler, J. et al. Akkumulation von Lipidpartikeln in der Bruch-Membran von LDL-Rezeptor-defizienten Mäusen als Modell für die altersbezogene Makuladegeneration. Ophthalmologe 101, 715–719 (2004). https://doi.org/10.1007/s00347-003-0942-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-003-0942-8

Schlüsselwörter

Keywords

Navigation