Skip to main content
Log in

Gewebetypisierung bei der perforierenden Keratoplastik

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

In den letzten Jahren ist aufgrund einer veränderten Beurteilung des Stellenwerts der HLA-Typisierung bei der perforierenden Keratoplastik die Nachfrage nach gematchten Spenderhornhäuten stark angestiegen. Neben den HLA- oder Major-Antigenen gibt es weitere immunologisch bedeutsame Gewebeoberflächenmoleküle, zu denen vor allem die Blutgruppen- und die Minor-Antigene zählen. Im Hinblick auf eine effektive Kosten-Nutzen- bzw. Wartezeit-Nutzen-Kalkulation sind differenzierte Matching-Strategien erforderlich, um eine optimale Nutzung und Verteilung der immer noch in ungenügender Zahl vorhandenen Korneatransplantate zu gewährleisten. Mit speziellen Matching-Strategien wie der Berechnung der individuellen Wartezeit, der Berücksichtigung von Split-, Non-MHC- und HLA-Antigenen, zusätzlichen HLA-Loci sowie „permissible“- und „taboo“-Mismatches wird in Zukunft mehr als nur die zahlenmäßige Übereinstimmung von HLA-Antigenen bei der Gewebetypisierung zu berücksichtigen sein. Dies wird es ermöglichen, von einer rein numerischen zu einer funktionellen Match-Strategie überzugehen. In dieser Übersicht wird der Stand der Diskussion zusammengefasst, und es werden verschiedene Strategien, Möglichkeiten und Grenzen sowohl der HLA- als auch der sonstigen Gewebetypisierung bei der perforierenden Keratoplastik erläutert.

Abstract

The demand for matched corneal grafts has risen rapidly over the last years. One reason for this is the change in the judgement of the value of tissue and especially HLA typing for prevention of an immune reaction in perforating corneal transplantation. Besides HLA or major antigens, there are other immunologically relevant tissue surface molecules such as the non-MHC antigens of which blood groups and minor antigens are the most important. With regard to effective cost-benefit and waiting time-benefit analyses, differentiated matching strategies are needed to assure optimized utilization and allocation of the still unsatisfactory number of available corneal grafts. With special matching strategies, such as the calculation of the individual waiting time, the consideration of split, non-MHC and HLA antigens, additional HLA loci as well as so-called “permissible” and “taboo” mismatches, much more has to be taken into account in the future than just the numerical correspondence of HLA antigens. This will make it possible to turn from a pure numerical approach to a functional matching strategy. This review summarizes the discussion and different matching strategies, possibilities and limitations of HLA and tissue typing in perforating corneal transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2a, b
Abb. 3a, b

Literatur

  1. Ardjomand N, Berghold A, Reich ME (1998) Loss of corneal Langerhans cells during storage in organ culture medium, Optisol and McCarey-Kaufman medium. Eye 12:134–138

    PubMed  Google Scholar 

  2. Baggesen K, Lamm LU, Ehlers N (1996) Significant effect of high-resolution HLA-DRB1 matching in high-risk corneal transplantation. Transplantation 62:1273–1277

    CAS  PubMed  Google Scholar 

  3. Bartels MC, Otten HG, van Gelderen BE et al. (2001) Influence of HLA-A, HLA-B, and HLA-DR matching on rejection of random corneal grafts using corneal tissue for retrospective DNA HLA typing. Br J Ophthalmol 85:1341–1346

    Article  CAS  PubMed  Google Scholar 

  4. Batchelor JR, Casey TA, Werb A et al. (1976) HLA matching and corneal grafting. Lancet 1:551–554

    Article  CAS  PubMed  Google Scholar 

  5. Beekhuis WH, van Rij G, Renardel de Lavalette JG et al. (1991) Corneal graft survival in HLA-A- and HLA-B-matched transplantations in high-risk cases with retrospective review of HLA-DR compatibility. Cornea 10:9–12

    CAS  PubMed  Google Scholar 

  6. Beekhuis WH, Bartels M, Doxiadis II et al. (2003) Degree of compatibility for HLA-A and -B affects outcome in high-risk corneal transplantation. Dev Ophthalmol 36:12–21

    PubMed  Google Scholar 

  7. Bendtzen K, Morling N, Fomsgaard A et al. (1988) Association between HLA-DR2 and production of tumour necrosis factor alpha and interleukin 1 by mononuclear cells activated by lipopolysaccharide. Scand J Immunol 28:599–606

    CAS  PubMed  Google Scholar 

  8. Bidwell J (1994) Advances in DNA-based HLA-typing methods. Immunol Today 15:303–307

    Article  CAS  PubMed  Google Scholar 

  9. Bohringer D, Reinhard T, Bohringer S et al. (2002) Predicting time on the waiting list for HLA matched corneal grafts. Tissue Antigens 59:407–411

    Article  CAS  PubMed  Google Scholar 

  10. Bohringer D, Reinhard T, Enczmann J et al. (2003) Individual analysis of expected time on the waiting list for HLA-matched corneal grafts. Dev Ophthalmol 36:50–55

    CAS  PubMed  Google Scholar 

  11. Boisjoly HM, Roy R, Bernard PM et al. (1990) Association between corneal allograft reactions and HLA compatibility. Ophthalmology 97:1689–1698

    CAS  PubMed  Google Scholar 

  12. Bradley BA, Vail A, Gore SM et al. (1993) Penetrating keratoplasty in the United Kingdom: an interim analysis of the corneal transplant follow-up study. Clin Transpl: 293–315

    Google Scholar 

  13. Bradley BA, Vail A, Gore SM et al. (1995) Negative effect of HLA-DR matching on corneal transplant rejection. Transplant Proc 27:1392–1394

    CAS  PubMed  Google Scholar 

  14. Claas FH, Roelen DL, Oudshoorn M et al. (2003) Future HLA matching strategies in clinical transplantation. Dev Ophthalmol 36:62–73

    PubMed  Google Scholar 

  15. Claas FHJ, Roelen DL, D’Amaro J et al. (1994) The role of HLA in corneal transplantation. In: Zierhut M (ed) Immunology of corneal transplantation. Aeolus Press Scientific Publishers, Buren, p 47

  16. Collaborative Corneal Transplantation Studies Research Group A (1992) The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group. Arch Ophthalmol 110:1392–1403

    PubMed  Google Scholar 

  17. Creemers PC, Kahn D, Hill JC (1999) HLA-A and -B alleles in cornea donors as risk factors for graft rejection. Transpl Immunol 7:15–18

    Article  CAS  PubMed  Google Scholar 

  18. de By TM (2003) Shortage in the face of plenty: improving the allocation of corneas for transplantation. Dev Ophthalmol 36:56–61

    PubMed  Google Scholar 

  19. Donnelly JJ, Li WY, Rockey JH et al. (1985) Induction of class II (Ia) alloantigen expression on corneal endothelium in vivo and in vitro. Invest Ophthalmol Vis Sci 26:575–580

    CAS  PubMed  Google Scholar 

  20. Doxiadis, II, Smits JM, Schreuder GM et al. (1996) Association between specific HLA combinations and probability of kidney allograft loss: the taboo concept. Lancet 348:850–853

    Article  CAS  PubMed  Google Scholar 

  21. Doxiadis, II, Smits JM, Stobbe I et al. (1996) Taboo HLA mismatches in cadaveric renal transplantation: definition, analysis, and possible implications. Transplant Proc 28:224

    CAS  PubMed  Google Scholar 

  22. Doxiadis II, Claas FH (2003) The short story of HLA and its methods. Dev Ophthalmol 36:5–11

    PubMed  Google Scholar 

  23. Dua HS, Shidham VB (1979) Application of specific red blood cell adherence test to the human cornea and conjunctiva. Am J Ophthalmol 88:1067–1071

    CAS  PubMed  Google Scholar 

  24. Eichwald EJ, Silmser CR (1955) Skin. Transplant Bull 2:148–149

    CAS  PubMed  Google Scholar 

  25. Foster CS, Allansmith MR (1979) Lack of blood group antigen A on human corneal endothelium. Am J Ophthalmol 87:165–170

    CAS  PubMed  Google Scholar 

  26. Foulks GN, Sanfilippo FP, Locascio JA 3rd et al. (1983) Histocompatibility testing for keratoplasty in high-risk patients. Ophthalmology 90:239–244

    CAS  PubMed  Google Scholar 

  27. Fujikawa LS, Colvin RB, Bhan AK et al. (1982) Expression of HLA-A/B/C an -DR locus antigens on epithelial, stromal and endothelial cells of the human cornea. Cornea 1:213–222

    Google Scholar 

  28. Garcher C, Bara J, Bron A et al. (1994) Expression of mucin peptide and blood group ABH- and Lewis-related carbohydrate antigens in normal human conjunctiva. Invest Ophthalmol Vis Sci 35:1184–1191

    CAS  PubMed  Google Scholar 

  29. Goulmy E, Pool J, Van Lochem E et al. (1995) The role of human minor histocompatibility antigens in graft failure: a mini-review. Eye 9:180–184

    PubMed  Google Scholar 

  30. Hahn AB, Foulks GN, Enger C et al. (1995) The association of lymphocytotoxic antibodies with corneal allograft rejection in high risk patients. The Collaborative Corneal Transplantation Studies Research Group. Transplantation 59:21–27

    CAS  PubMed  Google Scholar 

  31. Haskova Z, Sproule TJ, Roopenian DC et al. (2003) An immunodominant minor histocompatibility alloantigen that initiates corneal allograft rejection. Transplantation 75:1368–1374

    CAS  PubMed  Google Scholar 

  32. Hill JC, Creemers PC (1997) An adverse matching effect for the HLA-B locus in corneal transplantation. Transpl Int 10:145–149

    Article  CAS  PubMed  Google Scholar 

  33. Hoffmann F, von Keyserlingk HJ, Wiederholt M (1986) Importance of HLA DR matching for corneal transplantation in high-risk cases. Cornea 5:139–143

    CAS  PubMed  Google Scholar 

  34. Hoffmann F, Pahlitzsch T (1989) Predisposing factors in corneal graft rejection. Cornea 8:215–219

    CAS  PubMed  Google Scholar 

  35. Hoffmann F, Tregel M, Noske W et al. (1994) HLA-B and -DR match reduces the allograft reaction after keratoplasty. Ger J Ophthalmol 3:100–104

    Google Scholar 

  36. Hopkins KA, Maguire MG, Fink NE et al. (1992) Reproducibility of HLA-A, B, and DR typing using peripheral blood samples: results of retyping in the collaborative corneal transplantation studies. Collaborative Corneal Transplantation Studies Group (corrected). Hum Immunol 33:122–128

    Article  CAS  PubMed  Google Scholar 

  37. http://www.ctstransplant.org

  38. Jacob CO, Fronek Z, Lewis GD et al. (1990) Heritable major histocompatibility complex class II-associated differences in production of tumor necrosis factor alpha: relevance to genetic predisposition to systemic lupus erythematosus. Proc Natl Acad Sci USA 87:1233–1237

    CAS  PubMed  Google Scholar 

  39. Kamiya K, Hori J, Kagaya F et al. (2000) Preservation of donor cornea prevents corneal allograft rejection by inhibiting induction of alloimmunity. Exp Eye Res 70:737–743

    Article  CAS  PubMed  Google Scholar 

  40. Khaireddin R, Wachtlin J, Hoffmann F (in press) HLA-A, HLA-B and HLA-DR matching reduces the rate of corneal allograft rejection. Graefes Arch Clin Exp Ophthalmol DOI: 10.1007/s00417-003-0759-9

  41. Ksander BR, Sano Y, Streilein JW (1996) Role of donor-specific cytotoxic T cells in rejection of corneal allografts in normal and high-risk eyes. Transpl Immunol 4:49–52

    Article  CAS  PubMed  Google Scholar 

  42. Maruya E, Takemoto S, Terasaki PI (1993) HLA matching: identification of permissible HLA matches. In: Cecka JM (ed) Clinical transplants. UCLA Tissue typing Laboratory, Los Angeles, p 511–520

  43. Middleton D, Savage DA, Cullen C et al. (1988) Discrepancies in serological tissue typing revealed by DNA techniques. Transpl Int 1:161–164

    CAS  PubMed  Google Scholar 

  44. Morita N, Munkhbat B, Gansuvd B et al. (1998) Effect of HLA-A and -DPB1 matching in corneal transplantation. Transplant Proc 30:3491–3492

    Article  CAS  PubMed  Google Scholar 

  45. Morozumi K, Katoh M, Horike K et al. (2001) Pathologic characteristics of acute humoral rejection after ABO-incompatible kidney transplantation. Transplant Proc 33:3299–3300

    Article  CAS  PubMed  Google Scholar 

  46. Munkhbat B, Hagihara M, Sato T et al. (1997) Association between HLA-DPB1 matching and 1-year rejection-free graft survival in high-risk corneal transplantation. Transplantation 63:1011–1016

    CAS  PubMed  Google Scholar 

  47. Nicholls SM (1996) Non-HLA antigens and HLA-DR matching in corneal transplantation. Br J Ophthalmol 80:780–782

    CAS  PubMed  Google Scholar 

  48. Niederkorn JY, Shadduck JA, Streilein JW (1981) Immunogenetic basis for immunologic privilege in the anterior chamber of the eye. Immunogenetics 13:227–236

    CAS  PubMed  Google Scholar 

  49. Niederkorn JY, Mellon J (1996) Anterior chamber-associated immune deviation promotes corneal allograft survival. Invest Ophthalmol Vis Sci 37:2700–2707

    CAS  PubMed  Google Scholar 

  50. Niederkorn JY (1999) The immunology of corneal transplantation. Dev Ophthalmol 30:129–140

    CAS  PubMed  Google Scholar 

  51. Niederkorn JY (2001) Mechanisms of corneal graft rejection: the sixth annual Thygeson Lecture, presented at the Ocular Microbiology and Immunology Group meeting, October 21, 2000. Cornea 20:675–679

    Article  CAS  PubMed  Google Scholar 

  52. Nishimura JK, Hodge DO, Bourne WM (1999) Initial endothelial cell density and chronic endothelial cell loss rate in corneal transplants with late endothelial failure. Ophthalmology 106:1962–1965

    CAS  PubMed  Google Scholar 

  53. Opelz G (1988) Importance of HLA antigen splits for kidney transplant matching. Lancet 2:61–64

    Article  CAS  PubMed  Google Scholar 

  54. Opelz G, Scherer S, Mytilineos J (1997) Analysis of HLA-DR split-specificity matching in cadaver kidney transplantation: a report of the Collaborative Transplant Study. Transplantation 63:57–59

    CAS  PubMed  Google Scholar 

  55. Peeler JS, Niederkorn JY (1986) Antigen presentation by Langerhans cells in vivo: donor-derived Ia+ Langerhans cells are required for induction of delayed-type hypersensitivity but not for cytotoxic T lymphocyte responses to alloantigens. J Immunol 136:4362–4371

    CAS  PubMed  Google Scholar 

  56. Pepose JS, Gardner KM, Nestor MS et al. (1985) Detection of HLA class I and II antigens in rejected human corneal allografts. Ophthalmology 92:1480–1484

    CAS  PubMed  Google Scholar 

  57. Pleyer U, Weidle EG, Lisch W et al. (1990) Clinical types of immunologic transplant reactions following perforating keratoplasty. Fortschr Ophthalmol 87:14–19

    Google Scholar 

  58. Pleyer U (1997) Immune reaction after penetrating keratoplasty. Immunobiology, prevention and therapy. Ophthalmologe 94:933–950

    CAS  PubMed  Google Scholar 

  59. Pociot F, Briant L, Jongeneel CV et al. (1993) Association of tumor necrosis factor (TNF) and class II major histocompatibility complex alleles with the secretion of TNF-alpha and TNF-beta by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus. Eur J Immunol 23:224–231

    CAS  PubMed  Google Scholar 

  60. Reinhard T, Bohringer D, Enczmann J et al. (2003) HLA class I and II matching improves prognosis in penetrating normal-risk keratoplasty. Dev Ophthalmol 36:42–49

    PubMed  Google Scholar 

  61. Roy R, Boisjoly HM, Wagner E et al. (1992) Pretransplant and posttransplant antibodies in human corneal transplantation. Transplantation 54:463–467

    CAS  PubMed  Google Scholar 

  62. Roy R, Des Marchais B, Bazin R et al. (1997) Role of ABO and Lewis blood group antigens in donor-recipient compatibility of corneal transplantation rejection. Ophthalmology 104:508–512

    CAS  PubMed  Google Scholar 

  63. Salisbury JD, Gebhardt BM (1981) Blood group antigens on human corneal cells demonstrated by immunoperoxidase staining. Am J Ophthalmol 91:46–50

    CAS  PubMed  Google Scholar 

  64. Sanfilippo F, MacQueen JM, Vaughn WK et al. (1986) Reduced graft rejection with good HLA-A and B matching in high-risk corneal transplantation. N Engl J Med 315:29–35

    CAS  PubMed  Google Scholar 

  65. Sano Y, Ksander BR, Streilein JW (1996) Minor H, rather than MHC, alloantigens offer the greater barrier to successful orthotopic corneal transplantation in mice. Transpl Immunol 4:53–56

    Article  CAS  PubMed  Google Scholar 

  66. Santamaria P, Gehrz RC, Bryan MK et al. (1989) Involvement of class II MHC molecules in the LPS-induction of IL-1/TNF secretions by human monocytes. Quantitative differences at the polymorphic level. J Immunol 143:913–922

    CAS  PubMed  Google Scholar 

  67. Sonoda Y, Streilein JW (1992) Orthotopic corneal transplantation in mice—evidence that the immunogenetic rules of rejection do not apply. Transplantation 54:694–704

    CAS  PubMed  Google Scholar 

  68. Stobbe I, van der Meer-Prins E, Smits JM et al. (1999) In vitro reactivity of allospecific cytotoxic T lymphocytes does not explain the taboo phenomenon. Transpl Immunol 7:215–220

    Article  CAS  PubMed  Google Scholar 

  69. Streilein JW, Arancibia-Caracamo C, Osawa H (2003) The role of minor histocompatibility alloantigens in penetrating keratoplasty. Dev Ophthalmol 36:74–88

    PubMed  Google Scholar 

  70. Treseler PA, Foulks GN, Sanfilippo F (1984) The expression of HLA antigens by cells in the human cornea. Am J Ophthalmol 98:763–772

    CAS  PubMed  Google Scholar 

  71. Treseler PA, Foulks GN, Sanfilippo F (1985) Expression of ABO blood group, hematopoietic, and other cell-specific antigens by cells in the human cornea. Cornea 4:157–168

    PubMed  Google Scholar 

  72. Vail A, Gore SM, Bradley BA et al. (1994) Corneal graft survival and visual outcome. A multicenter Study. Corneal Transplant Follow-up Study Collaborators. Ophthalmology 101:120–127

    CAS  PubMed  Google Scholar 

  73. Vail A, Gore SM, Bradley BA et al. (1997) Conclusions of the corneal transplant follow up study. Collaborating Surgeons. Br J Ophthalmol 81:631–636

    Google Scholar 

  74. Vereerstraeten P, Dupont E, Andrien M et al. (1995) Influence of donor-recipient HLA-DR mismatches and OKT3 prophylaxis on cadaver kidney graft survival. Transplantation 60:253–258

    CAS  PubMed  Google Scholar 

  75. Volker-Dieben HJ, Kok-van Alphen CC, Lansbergen Q et al. (1982) Different influences on corneal graft survival in 539 transplants. Acta Ophthalmol (Copenh) 60:190–202

    Google Scholar 

  76. Volker-Dieben HJ, Claas FH, Schreuder GM et al. (2000) Beneficial effect of HLA-DR matching on the survival of corneal allografts. Transplantation 70:640–648

    PubMed  Google Scholar 

  77. Volker-Dieben HJ, Schreuder GM, Claas FH et al. (2003) Histocompatibility and corneal transplantation. Dev Ophthalmol 36:22–41

    CAS  PubMed  Google Scholar 

  78. Weissensteiner T, Lanchbury JS (1997) TNFB polymorphisms characterize three lineages of TNF region microsatellite haplotypes. Immunogenetics 47:6–16

    Article  CAS  PubMed  Google Scholar 

  79. Whitsett CF, Stulting RD (1984) The distribution of HLA antigens on human corneal tissue. Invest Ophthalmol Vis Sci 25:519–524

    CAS  PubMed  Google Scholar 

  80. Williams KA, Muehlberg SM, Lewis RF (1997) The Australian corneal graft registry 1996 report. Mercury Press, Adelaide

  81. Williams KA, Muehlberg SM, Bartlett CM et al. (1999) The Australian corneal graft registry 1999 report. Mercury Press, Adelaide, p 49

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wachtlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wachtlin, J., Khaireddin, R. & Hoffmann, F. Gewebetypisierung bei der perforierenden Keratoplastik. Ophthalmologe 100, 1021–1030 (2003). https://doi.org/10.1007/s00347-003-0934-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-003-0934-8

Schlüsselwörter

Keywords

Navigation