Skip to main content
Log in

Laser-epitheliale Keratomileusis (LASEK) zur Behandlung von Myopien bis -6,0 dpt

Ergebnisse nach 12 Monaten bei 108 Augen

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Laser-epitheliale Keratomileusis (LASEK) ist ein relativ neues keratorefraktives Verfahren zur Behandlung von Myopie und myopem Astigmatismus. Es werden die Ergebnisse von 108 konsekutiv LASEK-behandelten Augen mit einer Nachbeobachtungszeit von 12 Monaten vorgestellt.

Patienten und Methoden

Bei 108 Augen wurde eine LASEK mit dem Keracor-117-Excimer-Laser durchgeführt. Die mittlere präoperative Myopie betrug −4,12±1,30 dpt sphärisches Äquivalent (SÄ), der Astigmatismus maximal 3,25 dpt. Die 12-Monatsergebnisse liegen für 101 Augen (93,5%) vor.

Ergebnisse

Es traten keine schwerwiegenden Komplikationen auf. Nach 12 Monaten lagen 96% der Augen innerhalb von ±1,0 dpt und 86% innerhalb von ±0,5 dpt SÄ um Emmetropie. Ein Verlust an korrigiertem Visus von mehr als 1 Zeile oder ein kornealer Haze von mehr als Grad 1 wurde bei keinem Auge festgestellt. Ein unkorrigierter Visus (UCVA) von ≥1,0 wurde von 80%, von ≥0,5 von 98% der Augen erzielt.

Schlussfolgerungen

Mit der LASEK scheinen Myopien und myope Astigmatismen bis −6 dpt sicher und effektiv korrigiert werden zu können. Die Ergebnisse nach LASEK sind nach den bisherigen Erfahrungen mit denen nach PRK und LASIK vergleichbar. Die Ausbildung von Haze nach LASEK scheint gering. Die Abdeckung der stromalen Wunde mit einem vitalen Epithelläppchen könnte die postoperativen Wundheilungsreaktionen günstig beeinflussen.

Abstract

Background

Laser epithelial keratomileusis (LASEK) is a new keratorefractive procedure for the correction of myopia and myopic astigmatism, which may combine advantages and eliminate disadvantages of photorefractive keratectomy (e.g. pain, corneal haze) and laser in situ keratomileusis (e.g. flap and interface complications, dry eye, keratectasia). We present the results of 108 consecutively LASEK-treated eyes with a follow-up period of 12 months.

Patients and methods

LASEK was performed on 108 consecutive eyes with myopia or myopic astigmatism using a keracor 117 excimer laser. The mean preoperative refraction was −4.12±1.30 diopters (D) spherical equivalent range: −1.75 to −6.0 D and maximal cylinder was 3.25 D. Results of the 12 months visit are available for 101 eyes (93.5%).

Results

No serious complications were observed. After 12 months, SE was within ±1.0 D of emmetropia in 96% and within ±0.5 D in 86% of the eyes; 6 eyes had to be retreated. None of the eyes showed haze worse than grade 1 or lost more than one line of best-corrected visual acuity. Uncorrected visual acuity (UCVA) was ≥20/20 in 80% and ≥20/40 in 98%.

Conclusions

Laser epithelial keratomileusis (LASEK) seems to be safe and effective in treatment of myopia and myopic astigmatism of up to −6.0 D. Preliminary results compare favourably with those after photorefractive keratectomy and laser in situ keratomileusis. Haze formation after LASEK seems to be low. Coverage of the stromal wound with a vital epithelial flap could positively influence postoperative wound healing reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Alpins NA (2001) Astigmatism analysis by the Alpins method. J Cataract Refract Surg 27:31–49

    Article  CAS  PubMed  Google Scholar 

  2. Ambrosio R Jr, Wilson SE (2001) Complications of laser in situ keratomileusis: etiology, prevention and treatment. J Refract Surg 17:350–379

    PubMed  Google Scholar 

  3. American Academy of Ophthalmology (1999) Ophthalmic procedure preliminary assessment: excimer laser photoreractive keratectomy (PRK) for myopia and astigmatism. Ophthalmology 106:422–437

    PubMed  Google Scholar 

  4. Anderson NJ, Beran RF, Schneider TL (2002) Epi-LASEK for the correction of myopia and myopic astigmatism. J Cataract Refract Surg 28:1343–1347

    Article  PubMed  Google Scholar 

  5. Autraua R, Rehurek J (2003) Laser-assisted subepithelial keratectomy for myopia: two-year follow-up. J Cataract Refract Surg 29:661–668

    Article  PubMed  Google Scholar 

  6. Baek T, Lee K, Kagaya F et al. (2001) Factors affecting the forward shift of posterior corneal surface after laser in situ keratomileusis. Ophthalmology 108:317–320

    Article  CAS  PubMed  Google Scholar 

  7. Bühren J, Baumeister M, Kohnen T (2001) Diffuse lamellar keratitis after laser in situ keratomileusis imaged by confocal microscopy. Ophthalmology 108:1075–1081

    Article  PubMed  Google Scholar 

  8. Burrato L, Ferrari M (1993) Photorefractive keratectomy for myopia from 6,00 D to 10,00 D. Refract Corneal Surg 9 [Suppl]:S34–36

  9. Camellin M (1999) LASEK may offer the advantages of both LASIK and PRK. Ocular Surg News Internat Edition 3:14–15

    Google Scholar 

  10. Claringbold TV (2002) Laser-assisted subepithelial keratectomy for the correction of myopia. J Cataract Refract Surg 28:18–22

    Article  PubMed  Google Scholar 

  11. Corbett MC, Marshall J (1996) Corneal haze after photorefractive keratectomy. A review of etiological mechanisms and treatment options. Lasers Light Ophthalmol 7:173–196

    Google Scholar 

  12. Dreiss AK, Winkler von Mohrenfels C, Gabler B et al. (2002) Laserepitheliale Keratomileusis (LASEK): Histologische Untersuchungen zur Vitalität der kornealen Epithelzellen nach Alkoholexposition. Klin Monatsbl Augenheilkd 219:365–369

    Article  PubMed  Google Scholar 

  13. Fantes FE, Hanna KD, Waring GO et al. (1990) Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. Arch Ophthalmol 108:665–675

    CAS  PubMed  Google Scholar 

  14. Fernandez AP, Jaramillo J, Jaramillo M (2000) Comparison of photorefractive keratectomy and laser in situ keratomileusis for myopia of −6 D or less using the Nidek EC-5000 laser. J Refract Surg 16:711–715

    CAS  PubMed  Google Scholar 

  15. Gabler B, Winkler von Mohrenfels C, Lohmann CP (2002) Vitality of epithelial cells after alcohol exposure during laser-assisted subepithelial keratectomy flap preparation. J Cataract Refract Surg 28:1841–1846

    Article  PubMed  Google Scholar 

  16. Geggel HS, Talley AR (1999) Delayed onset keratectasia following laser in situ keratomileusis. J Cataract Refract Surg 25:582–586

    Article  CAS  PubMed  Google Scholar 

  17. Hadden OC, Ring CP, Morris AT, Elder MJ (1999) Visual, refractive and subjective outcomes after photorefractive keratectomy for myopia of 6 to 10 diopters using the Nidek laser. J Cataract Refract Surg 25:936–942

    Article  CAS  PubMed  Google Scholar 

  18. Hersh PS, Brint SF, Maloney RK et al. (1998) Photorefractive keratectomy versus laser in situ keratomileusis for moderate to high myopia. A randomized prospective study. Ophthalmology 105:1512–22

    CAS  PubMed  Google Scholar 

  19. Lee JB, Choe CM, Kim HS et al. (2002) Comparison of TGF-ß1 in tears following laser subepithelial keratomileusis and photorefractive keratectomy. J Refract Surg 18:130–134

    PubMed  Google Scholar 

  20. Lee JB, Seong GJ, Lee JH et al. (2001) Comparison of laser epithelial keratomileusis and photorefractive keratectomie for low to moderate myopia. J Cataract and Refract Surg 27:565–570

    Article  CAS  Google Scholar 

  21. Li D, Tseng SCG (1995) Three patterns of cytokine expression potentially involved in epithelial-fibroblast interactions of human ocular surface. J Cell Physiol 163:61–79

    CAS  PubMed  Google Scholar 

  22. Litwak S, Zadok D, Garcia-de Quevado V et al. (2002) Laser-assisted subepithelial keratectomy versus photorefractice keratectomy for the correction of moypia. J Cataract Refract Surg 28:1330–1333

    Article  PubMed  Google Scholar 

  23. Lohmann CP, Winkler von Mohrenfels C, Gabler B et al. (2002) Excimer Laser Subepitheliale Ablation (ELSA) bzw. Laser Epitheliale Keratomileusis (LASEK)—Ein neuartiges refraktiv-chirurgisches Verfahren zur Myopiekorrektur. Operationstechnik und erste klinische Ergebnisse an 24 Augen und nach 3 Monaten. Klin Monatsbl Augenheilkd 219:26–32

    Article  PubMed  Google Scholar 

  24. Lohmann CP (1997) Corneal wound healing and pharmacology in excimer laser keratorefractive surgery for myopia. Ophthalmol Clin North Am 10:455–472

    Google Scholar 

  25. Mc Carthy CA, Garrett SKM, Aldred GF et al. (1996) Assessment of subjective pain following photorefractive keratectomy. J Refract Surg 12:365–369

    PubMed  Google Scholar 

  26. Pop M, Payette Y (2000) Photorefractive keratectomy versus laser in situ keratomileusis. Ophthalmology 107:251–257

    Article  CAS  PubMed  Google Scholar 

  27. Quurke A, Schmidt-Petersen H, Seiler T (1998) Komplikationen der photorefraktiven Keratektomie zur Myopiekorrektur. Ophthalmologe 95:734–740

    Article  CAS  PubMed  Google Scholar 

  28. Roberts C (2000) The cornea is not a piece of plastic. J Refract Surg 16:407–413

    CAS  PubMed  Google Scholar 

  29. Seitz B, Torres F, Langenbucher A et al. (2001) Posterior corneal curvature changes after myopic laser in situ keratomileusis. Ophthalmology 108:666–672

    Article  CAS  PubMed  Google Scholar 

  30. Shah S, Sebai Sarhan AR, Doyle SJ et al. (2001) The epithelial flap for photorefractive keratectomy. Br J Ophthalmol 85:393–396

    Article  CAS  PubMed  Google Scholar 

  31. Shahinian L (2002) Laser-assisted subepithelial keratectomy for low to high myopia and astigmatism. J Cataract Refract Surg 28:1334–1342

    Article  PubMed  Google Scholar 

  32. Tole DM, McCarty DJ, Couper T, Taylor HR (2001) Comparison of laser in situ keratomileusis and photorefractive keratectomy for the correction of myopia of −6.00 diopters or less. J Refract Surg 17:46–54

    CAS  PubMed  Google Scholar 

  33. Wilson SE, Liu JJ, Mohan RR (1999) Stromal-epithelial interactions in the cornea. Prog Retin Eye Res 18:293–309

    Article  CAS  PubMed  Google Scholar 

  34. Zhao J, Nagasaki T, Maurice DM (2001) Role of tears in keratocyte loss after epithelial removal in mouse cornea. Invest Ophthalmol Vis Sci 42:1743–1749

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gabler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabler, B., von Mohrenfels, C.W., Herrmann, W. et al. Laser-epitheliale Keratomileusis (LASEK) zur Behandlung von Myopien bis -6,0 dpt. Ophthalmologe 101, 146–152 (2004). https://doi.org/10.1007/s00347-003-0885-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-003-0885-0

Schlüsselwörter

Keywords

Navigation