Skip to main content
Log in

Neue Keramikmaterialien zur Verwendung in der Anophthalmuschirurgie

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

In den letzten 20 Jahren wurden in der Implantationschirurgie besonders durch den Einsatz von biokolonisierbaren Implantaten wesentliche Fortschritte gemacht. Diese Implantate führen zu einer dauerhaften Biointegration mit verbesserter Prothesenmotilität und geringer Komplikationsrate. In diesem Beitrag werden Betrachtungen zur chemischen Struktur, zur Toxizität und zum Herstellungsverfahren der drei wichtigsten Implantatwerkstoffe angestellt: Aluminium, Hydroxylapatit und poröses Polyethylen.

Abstract

Over the last 20 years eyeball replacement surgery has improved, especially with the widely accepted use of biocolonisable implants. These implants allow long-lasting biointegration, thus improving prosthesis motility and reducing the rate of postoperative exposure. In this article, we review the chemical structure, toxicity data and manufacturing procedures of the three main commercially available materials: aluminium, hydroxyapatite and porous polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Adenis JP, Dourlhes N (1998) Implants en céramique. In: Adenis JP, Morax S (eds) Pathologie orbito-palpébrale. Société Française d'Ophtalmologie, Masson, Paris, pp 675–678

  2. Allen JH, Allen L (1950) A buried muscle cone implant. Arch Ophthalmol 43:879

    Google Scholar 

  3. Atkins AD, Roper-Hall MJ (1983) Magnetic orbital implant. Br J Ophthalmol 67:15–316

    Google Scholar 

  4. Berges O, Moret J (1994) Imagerie de l'oeil et de l'orbite : radiologie, échographie, scanner, imagerie par résonance magnétique, angiographies. Encycl Méd Chir, Paris. Ophtalmologie, 21-050-A-10

  5. Bernache-Assollant D (1993) Les biocéramiques: élaboration et propriétés. L'industrie céramique et verrière, 883:421–436

  6. Bonnet M (1841) Nouvelles recherches sur l'anatomie des aponévroses et des muscles de l'oeil. Ann Ocul 5–27

  7. Boutin P (1974) Arthroplastie totale de la hanche par prothèse en alumine. Acta Orthopaedica Belgica, Tome 40, Fasc 5–6

    Google Scholar 

  8. Boutin P (1971) L'alumine et son utilisation en chirurgie de la hanche. La Presse Médicale 79:639–640

  9. Cutler NL (1947) A positive contact ball and ring implant for use after enucleation. Arch Ophthalmol 37:73–81

    Google Scholar 

  10. Ferral JM (1841) Anatomy and pathology of certain structures in the orbit not previously described. Dublin J Med Sci 19:355

    Google Scholar 

  11. Guthoff R, Donath K, Osborn JF (1987) Solid hydroxyapatite ceramics as implant material after enucleation. Acta XXV concilium ophthalmologicum. Proceedings of the XXVth International Congress of Ophthalmology, Rome, 1986. Kugler & Ghedini, Amsterdam, pp 2740–2741

  12. Guthoff R, Vick HP, Schaudig U (1995) Zur Prophylaxe des Postenukleationssyndroms: Das Hydroxylapatit-Silikon-Implantat. Ophthalmologe 92:198–205

    CAS  PubMed  Google Scholar 

  13. Jordan DR, Anderson RL, Nerad JA, Allen L (1987) A preliminary report of the universal implant. Arch Ophthalmol 105:1726–1731

    CAS  PubMed  Google Scholar 

  14. Jordan DR (2000) Anophthalmic orbital implants. Ophthalmol Clin North Am 4:587–608

    Google Scholar 

  15. Karesh JW, Dresner SC (1994) High-density porous polyethylene (medpor) as a successful anophtalmic socket implant. Ophthalmology 101:1688–1696

    CAS  PubMed  Google Scholar 

  16. Leatherbarrows B, Kwartz J, Sunderlands S et al. (1994) The "baseball" orbital implant: a prospective study. Eye 8:569–576

    PubMed  Google Scholar 

  17. Morax S (1990) Use of Gore-Tex (polytetrafluoroethylene) in the anophthalmic socket. In: Bosniak SL (ed) Advances in ophthalmic plastic and reconstructive surgery. Pergamon Press, New-York, pp 82–87

  18. Mules PH (1885) Evisceration of the globe, with artificial vitreous. Trans Ophthalmol Soc UK 5:200–206

    Google Scholar 

  19. Nunery YWR, Heinz GW, Bonnin JM et al. (1993) Exposure rate of hydroxyapatite spheres in the anophtalmic socket: histopathologic correlation and comparison with silicone sphere implants. Ophthalmic Plast Reconstr Surg 9:96–104

    CAS  Google Scholar 

  20. Osborn JF (1985) Implantatwerkstoff Hydroxylapatitkeramik. Quintessenz, Berlin

  21. Perry AC (1990) Integrated orbital implants. Adv Ophthalmic Plast Reconstr Surg 8:75–81

    CAS  PubMed  Google Scholar 

  22. Rias A (1997) Caractérisation physico-chimique et étude clinique d'un implant biointégrable en alumine poreux dans la cavité orbitaire après éviscération de globes oculaires de lapins. Mémoire DEA "Biologie et Biomatériaux du milieu Buccal et Osseux", Paris, Nantes

  23. Roy DM, Kurtossy-Linnehan S (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247:220–223

    CAS  PubMed  Google Scholar 

  24. Rubin PA, Nicaeus TE, Warner MA, Remulla HD (1997) Effect of sucralfate and basic fibroblast growth factor on fibrovascular ingrowth into hydroxyapatite and porous polyethylene alloplastic implants using a novel rabbit model. Ophthalmic Plast Reconstr Surg 13:8–17

    CAS  Google Scholar 

  25. Rubin PA, Popham JK, Bilyk JR, Shore JW (1994) Comparison of fibrovascular ingrowth into hydroxyapatite and porous polyethylene orbital implants. Ophthalmol Reconstr Surg 10:96–103

    CAS  Google Scholar 

  26. Ruedmann AD (1946) Plastic eye implant. Am J Ophthalmol, 29:947–952

    Google Scholar 

  27. Rulfi JY, Adenis JP (2001) Past and present trends in intraorbital biointegrated macroporous material implants. Operative techniques in oculoplastic, orbital and Reconstructive Surgery 4:30–35

    Google Scholar 

  28. Shields CL, Shields JA, Eagle RC, De Potter P (1991) Histopathologic evidence of fibrovascular ingrowth four weeks after placement of the hydroxyapatite orbital implant. Am J Ophthalmol 111:363–366

    CAS  PubMed  Google Scholar 

  29. Sigot M (1994) Evaluation "in vitro" de la cytotoxicité d'une prothèse oculaire en alumine. Rapport d'étude. Université de Technologie de Compiègne

  30. Smith B, Bosniak SL, Lisman RD (1982) An autogenous kinetic dermis-fat orbital implant. An update technique. Ophthalmology 89:1067–1071

    CAS  PubMed  Google Scholar 

  31. Smith B, Bosniak SL, Nesi F, Lisman R (1983) Dermis-fat orbital implantation: 118 cases. Ophthalmic Surg 14:941–943

    CAS  PubMed  Google Scholar 

  32. Smith B, Petrelli R (1978) Dermis-fat graft as a movable implant within the muscle cone. Am J Ophthalmol 85:62–66

    CAS  PubMed  Google Scholar 

  33. Tyers AG, Collin JR (1985) Baseball orbital implants: a review of 39 patients. Br J Ophthalmol 69:438–442

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Y. Robert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, P.Y., Rulfi, J. & Adenis, J.P. Neue Keramikmaterialien zur Verwendung in der Anophthalmuschirurgie. Ophthalmologe 100, 503–506 (2003). https://doi.org/10.1007/s00347-003-0848-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-003-0848-5

Schlüsselwörter

Keywords

Navigation