Skip to main content

Advertisement

Log in

The emerging role of the urinary microbiome in benign noninfectious urological conditions: an up-to-date systematic review

  • Invited Review
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

The goal of this systematic review was to examine the current literature on the urinary microbiome and its associations with noninfectious, nonmalignant, urologic diseases. Secondarily, we aimed to describe the most common bioinformatics used to analyze the urinary microbiome.

Methods

A comprehensive literature search of Ovid MEDLINE using the keywords “microbiota” AND “prostatic hyperplasia,” “microbiota” AND “urinary bladder, overactive,” “microbiota” AND “pelvic pain,” and “microbiota” AND “urolithiasis” OR “nephrolithiasis” OR “urinary calculi” AND “calcium oxalate” was performed to identify relevant clinical microbiome studies associated with noninfectious benign urological conditions published from 2010 to 2022. We included human studies that evaluated the urinary, stone, or semen microbiota, or any combination of the above-mentioned locations.

Results

A total of 25 human studies met the inclusion criteria: 4 on benign prostatic hyperplasia (BPH), 9 on overactive bladder (OAB), 8 on calcium oxalate stones, and 4 on chronic pelvic pain syndrome (CPPS). Specific taxonomic profiles in the urine microbiome were associated with each pathology, and evaluation of alpha- and beta-diversity and relative abundance was accounted for most of the studies. Symptom prevalence and severity were also analyzed and showed associations with specific microbes.

Conclusion

The study of the urogenital microbiome is rapidly expanding in urology. Noninfectious benign urogenital diseases, such as BPH, calcium oxalate stones, CPPS, and OAB were found to be associated with specific microbial taxonomies. Further research with larger study populations is necessary to solidify the knowledge of the urine microbiome in these conditions and to facilitate the creation of microbiome-based diagnostic and therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Wolfe AJ et al (2012) Evidence of uncultivated bacteria in the adult female bladder. J Clin Microbiol 50(4):1376–1383. https://doi.org/10.1128/JCM.05852-11

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4(10):e7401. https://doi.org/10.1371/journal.pone.0007401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35(18):e120. https://doi.org/10.1093/nar/gkm541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim M, Morrison M, Yu Z (2011) Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J Microbiol Methods 84(1):81–87. https://doi.org/10.1016/j.mimet.2010.10.020

    Article  CAS  PubMed  Google Scholar 

  5. Schloss PD, Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77(10):3219–3226. https://doi.org/10.1128/AEM.02810-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bolyen E et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schloss PD (2021) Amplicon Sequence Variants Artificially Split Bacterial Genomes into Separate Clusters. mSphere 6(4):e0019121. https://doi.org/10.1128/mSphere.00191-21

    Article  PubMed  Google Scholar 

  8. Van Dooren TJM (2019) Assessing species richness trends: Declines of bees and bumblebees in the Netherlands since 1945. Ecol Evol 9(23):13056–13068. https://doi.org/10.1002/ece3.5717

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lin H, Peddada SD (2020) Analysis of compositions of microbiomes with bias correction. Nat Commun 11(1):3514. https://doi.org/10.1038/s41467-020-17041-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Segata N et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liberati A et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. https://doi.org/10.1136/bmj.b2700

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nickel JC et al (2016) Assessment of the Lower Urinary Tract Microbiota during Symptom Flare in Women with Urologic Chronic Pelvic Pain Syndrome: A MAPP Network Study. J Urol 195(2):356–362. https://doi.org/10.1016/j.juro.2015.09.075

    Article  PubMed  Google Scholar 

  13. Berry SH et al (2011) Prevalence of symptoms of bladder pain syndrome/interstitial cystitis among adult females in the United States. J Urol 186(2):540–544. https://doi.org/10.1016/j.juro.2011.03.132

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nickel JC (2011) Prostatitis. Can Urol Assoc J 5(5):306–315. https://doi.org/10.5489/cuaj.11211

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shoskes DA, Altemus J, Polackwich AS, Tucky B, Wang H, Eng C (2016) The Urinary Microbiome Differs Significantly Between Patients With Chronic Prostatitis/Chronic Pelvic Pain Syndrome and Controls as Well as Between Patients With Different Clinical Phenotypes. Urology 92:26–32. https://doi.org/10.1016/j.urology.2016.02.043

    Article  PubMed  Google Scholar 

  16. Holvoet T et al (2021) Fecal Microbiota Transplantation Reduces Symptoms in Some Patients With Irritable Bowel Syndrome With Predominant Abdominal Bloating: Short- and Long-term Results From a Placebo-Controlled Randomized Trial. Gastroenterology 160(1):145-157.e8. https://doi.org/10.1053/j.gastro.2020.07.013

    Article  CAS  PubMed  Google Scholar 

  17. Kartha GK, Kerr H, Shoskes DA (2013) Clinical phenotyping of urologic pain patients. Curr Opin Urol 23(6):560–564. https://doi.org/10.1097/MOU.0b013e3283652a9d

    Article  PubMed  Google Scholar 

  18. Joshi N et al (2010) Association between periodontal disease and prostate-specific antigen levels in chronic prostatitis patients. J Periodontol 81(6):864–869. https://doi.org/10.1902/jop.2010.090646

    Article  CAS  PubMed  Google Scholar 

  19. Shoskes DA, Wang H, Polackwich AS, Tucky B, Altemus J, Eng C (2016) Analysis of Gut Microbiome Reveals Significant Differences between Men with Chronic Prostatitis/Chronic Pelvic Pain Syndrome and Controls. J Urol 196(2):435–441. https://doi.org/10.1016/j.juro.2016.02.2959

    Article  PubMed  Google Scholar 

  20. Alkanani AK et al (2015) Alterations in Intestinal Microbiota Correlate With Susceptibility to Type 1 Diabetes. Diabetes 64(10):3510–3520. https://doi.org/10.2337/db14-1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lundy SD et al (2021) Functional and Taxonomic Dysbiosis of the Gut, Urine, and Semen Microbiomes in Male Infertility. Eur Urol 79(6):826–836. https://doi.org/10.1016/j.eururo.2021.01.014

    Article  CAS  PubMed  Google Scholar 

  22. Mändar R et al (2017) Seminal microbiome in men with and without prostatitis. Int J Urol 24(3):211–216. https://doi.org/10.1111/iju.13286

    Article  CAS  PubMed  Google Scholar 

  23. Weng S-L et al (2014) Bacterial communities in semen from men of infertile couples: metagenomic sequencing reveals relationships of seminal microbiota to semen quality. PLoS One 9(10):e110152. https://doi.org/10.1371/journal.pone.0110152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barbonetti A et al (2011) Effect of vaginal probiotic lactobacilli on in vitro-induced sperm lipid peroxidation and its impact on sperm motility and viability. Fertil Steril 95(8):2485–2488. https://doi.org/10.1016/j.fertnstert.2011.03.066

    Article  CAS  PubMed  Google Scholar 

  25. Abernethy MG, Rosenfeld A, White JR, Mueller MG, Lewicky-Gaupp C, Kenton K (2017) Urinary Microbiome and Cytokine Levels in Women With Interstitial Cystitis. Obstet Gynecol 129(3):500–506. https://doi.org/10.1097/AOG.0000000000001892

    Article  CAS  PubMed  Google Scholar 

  26. Siddiqui H, Lagesen K, Nederbragt AJ, Jeansson SL, Jakobsen KS (2012) Alterations of microbiota in urine from women with interstitial cystitis. BMC Microbiol 12:205. https://doi.org/10.1186/1471-2180-12-205

    Article  PubMed  PubMed Central  Google Scholar 

  27. Darbro BW, Petroelje BK, Doern GV (2009) Lactobacillus delbrueckii as the cause of urinary tract infection. J Clin Microbiol 47(1):275–277. https://doi.org/10.1128/JCM.01630-08

    Article  PubMed  Google Scholar 

  28. Nickel JC et al (2022) The bacterial microbiota of Hunner lesion interstitial cystitis/bladder pain syndrome. BJU Int 129(1):104–112. https://doi.org/10.1111/bju.15519

    Article  CAS  PubMed  Google Scholar 

  29. Kachroo N et al (2021) Meta-analysis of Clinical Microbiome Studies in Urolithiasis Reveal Age, Stone Composition, and Study Location as the Predominant Factors in Urolithiasis-Associated Microbiome Composition. mBio 12(4):e02007-21. https://doi.org/10.1128/mBio.02007-21

    Article  PubMed  PubMed Central  Google Scholar 

  30. Deng Q, Wang Z, Wang J, Zhang J, Zhang Y, Liang H (2022) 16S rRNA gene sequencing reveals altered composition of gut microbiota in postoperative individuals with renal stones. Lett Appl Microbiol 75(2):271–280. https://doi.org/10.1111/lam.13701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ziemba JB, Matlaga BR (2017) Epidemiology and economics of nephrolithiasis. Investig Clin Urol 58(5):299–306. https://doi.org/10.4111/icu.2017.58.5.299

    Article  PubMed  PubMed Central  Google Scholar 

  32. Saigal CS, Joyce G, Timilsina AR, Urologic Diseases in America Project (2005) Direct and indirect costs of nephrolithiasis in an employed population: opportunity for disease management? Kidney Int 68(4):1808–1814. https://doi.org/10.1111/j.1523-1755.2005.00599.x

    Article  PubMed  Google Scholar 

  33. Xiang L et al (2022) Prediction of the occurrence of calcium oxalate kidney stones based on clinical and gut microbiota characteristics. World J Urol 40(1):221–227. https://doi.org/10.1007/s00345-021-03801-7

    Article  CAS  PubMed  Google Scholar 

  34. Shen C et al (2021) Identifying Two Novel Clusters in Calcium Oxalate Stones With Urinary Tract Infection Using 16S rDNA Sequencing. Front Cell Infect Microbiol 11:723781. https://doi.org/10.3389/fcimb.2021.723781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kachroo N, Monga M, Miller AW (2022) Comparative functional analysis of the urinary tract microbiome for individuals with or without calcium oxalate calculi. Urolithiasis 50(3):303–317. https://doi.org/10.1007/s00240-022-01314-5

    Article  CAS  PubMed  Google Scholar 

  36. Dornbier RA et al (2020) The microbiome of calcium-based urinary stones. Urolithiasis 48(3):191–199. https://doi.org/10.1007/s00240-019-01146-w

    Article  CAS  PubMed  Google Scholar 

  37. Zhao Z, Xia Y, Xue J, Wu Q (2014) Role of E. coli-Secretion and Melamine in Selective Formation of CaC2O4·H2O and CaC2O4·2H2O Crystals. Cryst Growth Des 14(2):450–458. https://doi.org/10.1021/cg400960c

    Article  CAS  Google Scholar 

  38. Chutipongtanate S, Sutthimethakorn S, Chiangjong W, Thongboonkerd V (2013) Bacteria can promote calcium oxalate crystal growth and aggregation. J Biol Inorg Chem 18(3):299–308. https://doi.org/10.1007/s00775-012-0974-0

    Article  CAS  PubMed  Google Scholar 

  39. Izatulina AR, Nikolaev AM, Kuz’mina MA, Frank-Kamenetskaya OV, Malyshev VV (2019) Bacterial Effect on the Crystallization of Mineral Phases in a Solution Simulating Human Urine. Crystals. https://doi.org/10.3390/cryst9050259

    Article  Google Scholar 

  40. Saw JJ et al (2021) In Vivo Entombment of Bacteria and Fungi during Calcium Oxalate, Brushite, and Struvite Urolithiasis. Kidney360 2(2):298–311. https://doi.org/10.34067/KID.0006942020

    Article  PubMed  Google Scholar 

  41. Borghi L, Nouvenne A, Meschi T (2012) Nephrolithiasis and urinary tract infections: ‘the chicken or the egg’ dilemma? Nephrol Dial Transplant 27(11):3982–3984. https://doi.org/10.1093/ndt/gfs395

    Article  PubMed  Google Scholar 

  42. Kim H-N et al (2022) Gut microbiota and the prevalence and incidence of renal stones. Sci Rep 12(1):3732. https://doi.org/10.1038/s41598-022-07796-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu M et al (2017) Oxalobacter formigenes-associated host features and microbial community structures examined using the American Gut Project. Microbiome 5:108. https://doi.org/10.1186/s40168-017-0316-0

    Article  PubMed  PubMed Central  Google Scholar 

  44. Suryavanshi MV, Bhute SS, Jadhav SD, Bhatia MS, Gune RP, Shouche YS (2016) Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Sci Rep 6:34712. https://doi.org/10.1038/srep34712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen F et al (2021) Gut microbiota affect the formation of calcium oxalate renal calculi caused by high daily tea consumption. Appl Microbiol Biotechnol 105(2):789–802. https://doi.org/10.1007/s00253-020-11086-w

    Article  CAS  PubMed  Google Scholar 

  46. Zampini A, Nguyen AH, Rose E, Monga M, Miller AW (2019) Defining Dysbiosis in Patients with Urolithiasis. Sci Rep 9:5425. https://doi.org/10.1038/s41598-019-41977-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Denburg MR, Koepsell K, Lee J-J, Gerber J, Bittinger K, Tasian GE (2020) Perturbations of the Gut Microbiome and Metabolome in Children with Calcium Oxalate Kidney Stone Disease. J Am Soc Nephrol 31(6):1358–1369. https://doi.org/10.1681/ASN.2019101131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rusakov AV, Vlasov AD, Zelenskaya MS, Frank-Kamenetskaya OV, Vlasov DYu (2016) The Crystallization of Calcium Oxalate Hydrates Formed by Interaction Between Microorganisms and Minerals”, in Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems. In: Frank-Kamenetskaya OV, Panova EG, Vlasov DYu (eds) Lecture Notes in Earth System Sciences. Springer International Publishing, Cham, pp 357–377. https://doi.org/10.1007/978-3-319-24987-2_28

    Chapter  Google Scholar 

  49. Izatulina AR, Yelnikov VYu (2008) Structure, Chemistry and Crystallization Conditions of Calcium Oxalates—The Main Components of Kidney Stones. In: Krivovichev SV (ed) Minerals as Advanced Materials I. Berlin, Heidelberg, Springer, Berlin Heidelberg, pp 231–239. https://doi.org/10.1007/978-3-540-77123-4_29

    Chapter  Google Scholar 

  50. Ruijter GJG, Van De Vondervoort PJI, Visser J (1999) Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology 145(9):2569–2576. https://doi.org/10.1099/00221287-145-9-2569

    Article  CAS  PubMed  Google Scholar 

  51. Payne CL, Dark MJ, Conway JA, Farina LL (2017) A retrospective study of the prevalence of calcium oxalate crystals in veterinary Aspergillus cases. J VET Diagn Invest 29(1):51–58. https://doi.org/10.1177/1040638716672254

    Article  CAS  PubMed  Google Scholar 

  52. Zhao E, Zhang W, Geng B, You B, Wang W, Li X (2021) Intestinal dysbacteriosis leads to kidney stone disease. Mol Med Rep 23(3):180. https://doi.org/10.3892/mmr.2020.11819

    Article  CAS  PubMed  Google Scholar 

  53. Miller AW, Choy D, Penniston KL, Lange D (2019) Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int 96(1):180–188. https://doi.org/10.1016/j.kint.2019.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu F et al (2020) Characteristics of the urinary microbiome in kidney stone patients with hypertension. J Transl Med 18:130. https://doi.org/10.1186/s12967-020-02282-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Parsons JK (2010) Benign Prostatic Hyperplasia and Male Lower Urinary Tract Symptoms: Epidemiology and Risk Factors. Curr Bladder Dysfunct Rep 5(4):212–218. https://doi.org/10.1007/s11884-010-0067-2

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yu H, Meng H, Zhou F, Ni X, Shen S, Das UN (2015) Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Arch Med Sci 11(2):385–394. https://doi.org/10.5114/aoms.2015.50970

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bajic P et al (2020) Male Bladder Microbiome Relates to Lower Urinary Tract Symptoms. Eur Urol Focus 6(2):376–382. https://doi.org/10.1016/j.euf.2018.08.001

    Article  PubMed  Google Scholar 

  58. Holland B et al (2020) The effect of the urinary and faecal microbiota on lower urinary tract symptoms measured by the International Prostate Symptom Score: analysis utilising next-generation sequencing. BJU Int 125(6):905–910. https://doi.org/10.1111/bju.14972

    Article  CAS  PubMed  Google Scholar 

  59. Pearce MM et al (2014) The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. mBio 5(4):e01283-01214. https://doi.org/10.1128/mBio.01283-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee H-Y et al (2021) The impact of urine microbiota in patients with lower urinary tract symptoms. Ann Clin Microbiol Antimicrob 20(1):23. https://doi.org/10.1186/s12941-021-00428-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Radej S, Szewc M, Maciejewski R (2022) Prostate Infiltration by Treg and Th17 Cells as an Immune Response to Propionibacterium acnes Infection in the Course of Benign Prostatic Hyperplasia and Prostate Cancer. Int J Mol Sci 23(16):8849. https://doi.org/10.3390/ijms23168849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lloyd GL, Marks JM, Ricke WA (2019) Benign Prostatic Hyperplasia and Lower Urinary Tract Symptoms: What Is the Role and Significance of Inflammation? Curr Urol Rep 20(9):54. https://doi.org/10.1007/s11934-019-0917-1

    Article  PubMed  PubMed Central  Google Scholar 

  63. Scarneciu I et al (2021) Overactive bladder: a review and update. Exp Ther Med 22(6):1444. https://doi.org/10.3892/etm.2021.10879

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hilt EE et al (2014) Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J Clin Microbiol 52(3):871–876. https://doi.org/10.1128/JCM.02876-13

    Article  PubMed  PubMed Central  Google Scholar 

  65. Curtiss N, Balachandran A, Krska L, Peppiatt-Wildman C, Wildman S, Duckett J (2017) A case controlled study examining the bladder microbiome in women with Overactive Bladder (OAB) and healthy controls. Eur J Obstet Gynecol Reprod Biol 214:31–35. https://doi.org/10.1016/j.ejogrb.2017.04.040

    Article  PubMed  Google Scholar 

  66. Li K et al (2022) Interplay between bladder microbiota and overactive bladder symptom severity: a cross-sectional study. BMC Urol 22(1):39. https://doi.org/10.1186/s12894-022-00990-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Price TK, Hilt EE, Thomas-White K, Mueller ER, Wolfe AJ, Brubaker L (2020) The urobiome of continent adult women: a cross-sectional study. BJOG 127(2):193–201. https://doi.org/10.1111/1471-0528.15920

    Article  CAS  PubMed  Google Scholar 

  68. Karstens L et al (2016) Does the Urinary Microbiome Play a Role in Urgency Urinary Incontinence and Its Severity? Front Cell Infect Microbiol 6:78. https://doi.org/10.3389/fcimb.2016.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nardos R et al (2022) Network-Based Differences in the Vaginal and Bladder Microbial Communities Between Women With and Without Urgency Urinary Incontinence. Front Cell Infect Microbiol 12:759156. https://doi.org/10.3389/fcimb.2022.759156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Newman ME (2003) A Measure of Betweenness Centrality based on Random Walks. Soc Netw 27:39–54. https://doi.org/10.1016/j.socnet.2004.11.009

    Article  Google Scholar 

  71. Stavropoulou E et al (2021) Focus on the Gut-Kidney Axis in Health and Disease. Front Med 7:620102. https://doi.org/10.3389/fmed.2020.620102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr HNS had full access to all the data in the study and took responsibility for the integrity of the data and the accuracy of the data analysis. Protocol/project development: SA, JM, KS, RM, TRWH, KA. Data collection or management: SA, JM, JGP, PKS, KS, SR. Data analysis: PKS, SR. Manuscript writing/editing: SA, JM, JGP, PKS, SR, KS, RM, TRWH, KA, HNS.

Corresponding author

Correspondence to Hemendra N. Shah.

Ethics declarations

Conflict of interest

Dr Hemendra Shah received $1000 from Lumenis for mentoring urologists for HoLEP in 2019, and he has been sponsored by Boston Scientific and Applaud. No funding from these companies was received for the study. All other authors have nothing to disclose.

Ethical approval

This systematic review was conducted retrospectively from deidentified data obtained from previously published articles only performed in humans. We consulted extensively with the IRB of the University of Miami who determined that our study did not need ethical approval in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suarez Arbelaez, M.C., Monshine, J., Porto, J.G. et al. The emerging role of the urinary microbiome in benign noninfectious urological conditions: an up-to-date systematic review. World J Urol 41, 2933–2948 (2023). https://doi.org/10.1007/s00345-023-04588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-023-04588-5

Keywords

Navigation