Skip to main content

Advertisement

Log in

What to expect from the novel pulsed thulium:YAG laser? A systematic review of endourological applications

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Introduction

Several preclinical studies about a novel pulsed-thulium:yttrium-aluminum-garnet (p-Tm:YAG) device have been published, demonstrating its possible clinical relevance.

Methods

We systematically reviewed the reality and expectations for this new p-Tm:YAG technology. A PubMed, Scopus and Embase search were performed. All relevant studies and data identified in the bibliographic search were selected, categorized, and summarized.

Results

Tm:YAG is a solid state diode-pumped laser that emits at a wavelength of 2013 nm, in the infrared spectrum. Despite being close to the Ho:YAG emission wavelength (2120 nm), Tm:YAG is much closer to the water absorption peak and has higher absorption coefficient in liquid water. At present, there very few evaluations of the commercially available p-Tm:YAG devices. There is a lack of information on how the technical aspects, functionality and pulse mechanism can be maximized for clinical utility. Available preclinical studies suggest that p-Tm:YAG laser may potentially increase the ablated stone weight as compared to Ho:YAG under specific condition and similar laser parameters, showing lower retropulsion as well. Regarding laser safety, a preclinical study observed similar absolute temperature and cumulative equivalent minutes at 43° C as compared to Ho:YAG. Finally, laser-associated soft-tissue damage was assessed at histological level, showing similar extent of alterations due to coagulation and necrosis when compared with the other clinically relevant lasers.

Conclusions

The p-Tm:YAG appears to be a potential alternative to the Ho:YAG and TFL according to these preliminary laboratory data. Due to its novelty, further studies are needed to broaden our understanding of its functioning and clinical applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fried NM (2018) Recent advances in infrared laser lithotripsy. Biomed Opt Express 9(9):4552–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnson DE, Cromeens DM, Price RE (1992) Use of the holmium:YAG laser in urology. Lasers Surg Med 12:353–363

    Article  CAS  PubMed  Google Scholar 

  3. Ventimiglia E, Traxer O (2019) What is Moses effect: an historical perspective. J Endourol 35:353–357. https://doi.org/10.1089/end.2019.0012

    Article  Google Scholar 

  4. European Association of Urology (EAU) (2023) Guidelines, Urolithiasis. https://uroweb.org/guidelines/urolithiasis

  5. Traxer O, Keller EX (2020) Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium:YAG laser. World J Urol 38:1883–1894. https://doi.org/10.1007/s00345-019-02654-5

    Article  CAS  PubMed  Google Scholar 

  6. Khandpur RS (2020) Laser, Thulium:YAG. In: Compendium of biomedical instrumentation, vol 2. Wiley, pp 1165–1167. https://doi.org/10.1002/9781119288190.ch218

  7. Proietti S, Rodríguez-Socarrás ME, Eisner BH, Lucianò R, Basulto Martinez MJ, Yeow Y et al (2021) Thulium:YAG versus Holmium:YAG laser effect on upper urinary tract soft tissue: evidence from an ex vivo experimental study. J Endourol 35:544–551. https://doi.org/10.1089/end.2020.0222

    Article  PubMed  Google Scholar 

  8. Netsch C, Becker B, Tiburtius C, Moritz C, Becci AV, Herrmann TRW et al (2017) A prospective, randomized trial comparing thulium vapoenucleation with holmium laser enucleation of the prostate for the treatment of symptomatic benign prostatic obstruction: perioperative safety and efficacy. World J Urol 35:1913–1921. https://doi.org/10.1007/s00345-017-2071-z

    Article  CAS  PubMed  Google Scholar 

  9. Taratkin M, Azilgareeva C, Taratkina D, Goryacheva E, Rapoport L, Enikeev D (2021) Laser endoscopic procedures on the prostate: it is the small details that count. Curr Opin Urol 31:468–472. https://doi.org/10.1097/MOU.0000000000000919

    Article  PubMed  Google Scholar 

  10. Netsch C, Bach T, Herrmann TRW, Gross AJ (2015) Update on the current evidence for Tm:YAG vapoenucleation of the prostate 2014. World J Urol 33:517–524. https://doi.org/10.1007/s00345-014-1417-z

    Article  CAS  PubMed  Google Scholar 

  11. Hashim H, Worthington J, Abrams P, Young G, Taylor H, Noble SM et al (2020) Thulium laser transurethral vaporesection of the prostate versus transurethral resection of the prostate for men with lower urinary tract symptoms or urinary retention (UNBLOCS): a randomised controlled trial. Lancet (London, England) 396:50–61. https://doi.org/10.1016/S0140-6736(20)30537-7

    Article  PubMed  Google Scholar 

  12. Kramer MW, Wolters M, Cash H, Jutzi S, Imkamp F, Kuczyk MA et al (2015) Current evidence of transurethral Ho:YAG and Tm:YAG treatment of bladder cancer: update 2014. World J Urol 33:571–579. https://doi.org/10.1007/s00345-014-1337-y

    Article  CAS  PubMed  Google Scholar 

  13. Defidio L, Antonucci M, De Dominicis M, Fuchs G, Patel A (2019) Thulium-Holmium:YAG duo laser in conservative upper tract urothelial cancer treatment: 13 years experience from a tertiary national referral center. J Endourol 33:902–908. https://doi.org/10.1089/end.2019.0308

    Article  PubMed  Google Scholar 

  14. Pal D, Ghosh A, Sen R, Pal A (2016) Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations. Appl Opt 55:6151–6155. https://doi.org/10.1364/AO.55.006151

    Article  CAS  PubMed  Google Scholar 

  15. Kronenberg P, Somani B (2018) Advances in lasers for the treatment of stones—a systematic review. Curr Urol Rep. https://doi.org/10.1007/s11934-018-0807-y

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hartung FO, Kowalewski K-F, von Hardenberg J, Worst TS, Kriegmair MC, Nuhn P et al (2021) Holmium versus thulium laser enucleation of the prostate: a systematic review and meta-analysis of randomized controlled trials. Eur Urol Focus. https://doi.org/10.1016/j.euf.2021.03.024

    Article  PubMed  Google Scholar 

  17. Zhang JJ, Rajabhandharaks D, Xuan JR, Wang H, Chia RWJ, Hasenberg T et al (2015) Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy. J Biomed Opt 20:128001. https://doi.org/10.1117/1.JBO.20.12.128001

    Article  PubMed  Google Scholar 

  18. Huang H, Li M, Liu P, Jin L, Wang H, Shen D (2016) Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser. Opt Lett 41:2700–2703. https://doi.org/10.1364/OL.41.002700

    Article  CAS  PubMed  Google Scholar 

  19. Cho CY, Chen YF, Zhang G, Chen WD, Liang HC (2017) Exploring the self-mode locking of the 2 μm Tm:YAG laser with suppression of the self-pulsing dynamic. Opt Lett 42:5226–5229. https://doi.org/10.1364/OL.42.005226

    Article  CAS  PubMed  Google Scholar 

  20. Gao P, Huang H, Wang X, Liu H, Huang J, Weng W et al (2018) Passively Q-switched solid-state Tm:YAG laser using topological insulator Bi(2)Te(3) as a saturable absorber. Appl Opt 57:2020–2024. https://doi.org/10.1364/AO.57.002020

    Article  CAS  PubMed  Google Scholar 

  21. Xu J, Cai E, Zhang S, Fan X, Wang M, Lou F et al (2021) Nickel-vanadium layered double hydroxide nanosheets as the saturable absorber for a passively Q-switched 2 µm solid-state laser. Appl Opt 60:1851–1855. https://doi.org/10.1364/AO.413803

    Article  PubMed  Google Scholar 

  22. Rohde I, Masch J-M, Theisen-Kunde D, Marczynski-Bühlow M, Bombien Quaden R, Lutter G et al (2015) Resection of calcified aortic heart leaflets in vitro by Q-switched 2 µm microsecond laser radiation. J Card Surg 30:157–162. https://doi.org/10.1111/jocs.12481

    Article  CAS  PubMed  Google Scholar 

  23. Wang Q, Teng H, Zou Y, Zhang Z, Li D, Wang R et al (2012) Graphene on SiC as a Q-switcher for a 2 μm laser. Opt Lett 37:395–397. https://doi.org/10.1364/OL.37.000395

    Article  PubMed  Google Scholar 

  24. Gao C, Lin Z, Gao M, Zhang Y, Zhu L, Wang R et al (2010) Single-frequency operation of diode-pumped 2 microm Q-switched Tm:YAG laser injection seeded by monolithic nonplanar ring laser. Appl Opt 49:2841–2844. https://doi.org/10.1364/AO.49.002841

    Article  CAS  PubMed  Google Scholar 

  25. Li C, Song J, Shen D, Kim NS, Ueda K, Huo Y et al (1999) Diode-pumped high-efficiency Tm:YAG lasers. Opt Express 4:12–18. https://doi.org/10.1364/oe.4.000012

    Article  CAS  PubMed  Google Scholar 

  26. Kovacs M, Flynn G, Javan A (1966) Q switching of molecular laser transitions. Appl Phys Lett. https://doi.org/10.1063/1.1754484

    Article  Google Scholar 

  27. Ventimiglia E, Villa L, Doizi S, Briganti A, Proietti S, Giusti G et al (2021) Laser lithotripsy: the importance of peak power and pulse modulation. Eur Urol Focus 7:22–25. https://doi.org/10.1016/j.euf.2021.01.012

    Article  PubMed  Google Scholar 

  28. Petzold R, Suarez-Ibarrola R, Miernik A (2021) Gas bubble anatomy during laser lithotripsy: an experimental in vitro study of a pulsed solid-state Tm:YAG and Ho:YAG device. J Endourol 35:1051–1057. https://doi.org/10.1089/end.2020.0526

    Article  PubMed  Google Scholar 

  29. Petzold R, Miernik A, Suarez-Ibarrola R (2021) In vitro dusting performance of a new solid state thulium laser compared to holmium laser lithotripsy. J Endourol 35:221–225. https://doi.org/10.1089/end.2020.0525

    Article  PubMed  Google Scholar 

  30. Kraft L, Yilmaz M, Petzold R, Gratzke C, Suarez-Ibarrola R, Miernik A (2022) Dusting efficiency of a novel pulsed thulium: yttrium aluminum garnet laser vs a thulium fiber laser. J Endourol 36:259–265. https://doi.org/10.1089/end.2021.0441

    Article  PubMed  Google Scholar 

  31. Panthier F, Ventimiglia E, Berthe L, Chaussain C, Daudon M, Doizi S et al (2020) How much energy do we need to ablate 1 mm(3) of stone during Ho:YAG laser lithotripsy? An in vitro study. World J Urol 38:2945–2953. https://doi.org/10.1007/s00345-020-03091-5

    Article  CAS  PubMed  Google Scholar 

  32. Ventimiglia E, Pauchard F, Gorgen ARH, Panthier F, Doizi S, Traxer O (2021) How do we assess the efficacy of Ho:YAG low-power laser lithotripsy for the treatment of upper tract urinary stones? Introducing the Joules/mm(3) and laser activity concepts. World J Urol 39:891–896. https://doi.org/10.1007/s00345-020-03241-9

    Article  PubMed  Google Scholar 

  33. Kraft L, Petzold R, Suarez-Ibarrola R, Miernik A (2022) In vitro fragmentation performance of a novel, pulsed Thulium solid-state laser compared to a Thulium fibre laser and standard Ho:YAG laser. Lasers Med Sci 37:2071–2078. https://doi.org/10.1007/s10103-021-03495-8

    Article  PubMed  Google Scholar 

  34. Ventimiglia E, Corsini C, Fantin M, Traxer O, Salonia A (2022) Clinical comparison of thulium fiber and holmium: yttrium-aluminum-garnet lasers for the treatment of upper urinary tract stone disease: are we doing it right? Minerva Urol Nephrol 74:502–503. https://doi.org/10.23736/S2724-6051.22.05006-6

    Article  PubMed  Google Scholar 

  35. Robesti D, Villa L, Saccomandi P, Traxer O, Salonia A, Ventimiglia E (2022) Ho:YAG laser and temperature: is it safe to use high-power settings? World J Urol 40:1891–1892. https://doi.org/10.1007/s00345-022-04014-2

    Article  PubMed  Google Scholar 

  36. Kamal W, Kallidonis P, Koukiou G, Amanatides L, Panagopoulos V, Ntasiotis P et al (2016) Stone retropulsion with Ho: YAG and Tm: YAG lasers: a clinical practice-oriented experimental study. J Endourol 30:1145–1149. https://doi.org/10.1089/end.2016.0212

    Article  PubMed  Google Scholar 

  37. Petzold R, Miernik A, Suarez-Ibarrola R (2021) Retropulsion force in laser lithotripsy-an in vitro study comparing a Holmium device to a novel pulsed solid-state Thulium laser. World J Urol 39:3651–3656. https://doi.org/10.1007/s00345-021-03668-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huusmann S, Lafos M, Meyenburg I, Muschter R, Teichmann H-O, Herrmann T (2021) Tissue effects of a newly developed diode pumped pulsed Thulium:YAG laser compared to continuous wave Thulium:YAG and pulsed Holmium:YAG laser. World J Urol 39:3503–3508. https://doi.org/10.1007/s00345-021-03634-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yilmaz M, Esser J, Kraft L, Petzold R, Sigle A, Gratzke C et al (2022) Experimental ex-vivo performance study comparing a novel, pulsed thulium solid-state laser, chopped thulium fibre laser, low and high-power holmium:YAG laser for endoscopic enucleation of the prostate. World J Urol 40:601–606. https://doi.org/10.1007/s00345-021-03825-z

    Article  CAS  PubMed  Google Scholar 

  40. Petzold R, Suarez-Ibarrola R, Miernik A (2021) Temperature assessment of a novel pulsed thulium solid-state laser compared with a holmium:yttrium-aluminum-garnet laser. J Endourol 35:853–859. https://doi.org/10.1089/end.2020.0803

    Article  PubMed  Google Scholar 

  41. De Coninck V, Defraigne C, Traxer O (2022) Watt determines the temperature during laser lithotripsy. World J Urol 40:1257–1258. https://doi.org/10.1007/s00345-021-03848-6

    Article  PubMed  Google Scholar 

  42. Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800. https://doi.org/10.1016/0360-3016(84)90379-1

    Article  CAS  PubMed  Google Scholar 

  43. Villa L, Cloutier J, Comperat E, Kronemberg P, Charlotte F, Berthe L et al (2016) Do we really need to wear proper eye protection when using holmium:yag laser during endourologic procedures? Results from an ex vivo animal model on pig eyes. J Endourol 30:332–337. https://doi.org/10.1089/end.2015.0232

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Ventimiglia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventimiglia, E., Robesti, D., Bevilacqua, L. et al. What to expect from the novel pulsed thulium:YAG laser? A systematic review of endourological applications. World J Urol 41, 3301–3308 (2023). https://doi.org/10.1007/s00345-023-04580-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-023-04580-z

Keywords

Navigation