Skip to main content

Advertisement

Log in

Personalizing approaches to the management of metastatic hormone sensitive prostate cancer: role of advanced imaging, genetics and therapeutics

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

To summarize contemporary and emerging strategies for the diagnosis and management of metastatic hormone sensitive prostate cancer (mHSPC), focusing on diagnostic testing and therapeutics.

Methods

Literature review using PUBMED-Medline databases as well as clinicaltrials.gov to include reported or ongoing clinical trials on treatment for mHSPC. We prioritized the findings from phase III randomized clinical trials, systematic reviews, meta-analyses and clinical practice guidelines.

Results

There have been significant changes to the diagnosis and staging evaluation of mHSPC with the integration of increasingly accurate positron emission tomography (PET) imaging tracers that exceed the performance of conventional computerized tomography (CT) and bone scan. Germline multigene testing is recommended for the evaluation of patients newly diagnosed with mHSPC given the prevalence of actionable alterations that may create candidacy for specific therapies. Although androgen deprivation therapy (ADT) remains the backbone of treatment for mHSPC, approaches to first-line treatment include the integration of multiple agents including androgen receptor synthesis inhibitors (ARSI; abiraterone) Androgen Receptor antagonists (enzalutamide, darolutamide, apalautamide), and docetaxel chemotherapy. The combination of ADT, ARSI, and docetaxel chemotherapy has recently been evaluated in a randomized trial and was associated with significantly improved overall survival including in patients with a high burden of disease. The role of local treatment to the prostate with radiation has been evaluated in randomized trials with additional studies underway evaluating the role of cytoreductive radical prostatectomy.

Conclusion

The staging and initial management of patients with mHSPC has undergone significant advances in the last decade with advancements in the diagnosis, treatment and sequencing of therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rawla P (2019) Epidemiology of prostate cancer. World J Oncol 10:63–89. https://doi.org/10.14740/wjon1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2002. CA A Cancer J Clin. https://doi.org/10.3322/caac.21708

    Article  Google Scholar 

  3. Carlsson S et al (2012) Prostate cancer screening: facts, statistics, and interpretation in response to the US preventive services task force review. J Clin Oncol 30:2581

    Article  PubMed  PubMed Central  Google Scholar 

  4. Patel NH et al (2018) Prostate cancer screening trends after united states preventative services task force guidelines in an underserved population. Health Equity 2:55–61. https://doi.org/10.1089/heq.2018.0004

    Article  PubMed  PubMed Central  Google Scholar 

  5. Leapman MS et al (2022) Changes in prostate-specific antigen testing relative to the revised US preventive services task force recommendation on prostate cancer screening. JAMA Oncol 8:41–47. https://doi.org/10.1001/jamaoncol.2021.5143

    Article  PubMed  Google Scholar 

  6. Ahlering T et al (2019) Unintended consequences of decreased PSA-based prostate cancer screening. World J Urol 37:489–496. https://doi.org/10.1007/s00345-018-2407-3

    Article  PubMed  Google Scholar 

  7. Dall’Era MA, deVere-White R, Rodriguez D, Cress R (2019) Changing incidence of metastatic prostate cancer by race and age, 1988–2015. Eur Urol Focus 5:1014–1021. https://doi.org/10.1016/j.euf.2018.04.016

    Article  PubMed  Google Scholar 

  8. Desai MM et al (2022) Trends in incidence of metastatic prostate cancer in the US. JAMA Netw Open 5:e222246. https://doi.org/10.1001/jamanetworkopen.2022.2246

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wade CA, Kyprianou N (2018) Profiling prostate cancer therapeutic resistance. Int J Mol Sci. https://doi.org/10.3390/ijms19030904

    Article  PubMed  PubMed Central  Google Scholar 

  10. Khoshkar Y et al (2022) Mortality in men with castration-resistant prostate cancer-A long-term follow-up of a population-based real-world cohort. BJUI Compass 3:173–183. https://doi.org/10.1002/bco2.116

    Article  PubMed  Google Scholar 

  11. Das CJ, Razik A, Sharma S (2018) Positron emission tomography in prostate cancer: an update on state of the art. Indian J Urol IJU J Urol Soc India 34:172–179. https://doi.org/10.4103/iju.IJU_320_17

    Article  Google Scholar 

  12. Giri VN et al (2020) Implementation of germline testing for prostate cancer: Philadelphia prostate cancer consensus Conference 2019. J Clin Oncol 38:2798–2811. https://doi.org/10.1200/jco.20.00046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lowrance WT et al (2021) Advanced prostate cancer: AUA/ASTRO/SUO guideline PART I. J Urol 205:14–21. https://doi.org/10.1097/ju.0000000000001375

    Article  PubMed  Google Scholar 

  14. Overman D (2022) Lantheus updates NCCN guidelines for PSMA PET imaging for prostate cancer. AXIS imaging news

  15. Ljungberg B et al (2020) EAU guidelines. Edn presented at the EAU annual congress Amsterdam. Eur Urol 67:913–924

  16. Wenzel M et al (2021) Overall survival after systemic treatment in high-volume versus low-volume metastatic hormone-sensitive prostate cancer: systematic review and network meta-analysis. Eur Urol Focus. https://doi.org/10.1016/j.euf.2021.04.003

    Article  PubMed  Google Scholar 

  17. Sweeney CJ et al (2015) Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med 373:737–746. https://doi.org/10.1056/NEJMoa1503747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jia JB, Houshyar R, Verma S, Uchio E, Lall C (2016) Prostate cancer on computed tomography: A direct comparison with multi-parametric magnetic resonance imaging and tissue pathology. Eur J Radiol 85:261–267. https://doi.org/10.1016/j.ejrad.2015.10.013

    Article  PubMed  Google Scholar 

  19. Mason BR et al (2019) Current status of MRI and PET in the NCCN guidelines for prostate cancer. J Natl Compr Canc Netw 17:506–513. https://doi.org/10.6004/jnccn.2019.7306

    Article  CAS  PubMed  Google Scholar 

  20. Lecouvet FE et al (2012) Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 62:68–75. https://doi.org/10.1016/j.eururo.2012.02.020

    Article  PubMed  Google Scholar 

  21. Soloway MS et al (1988) Stratification of patients with metastatic prostate cancer based on extent of disease on initial bone scan. Cancer 61:195–202. https://doi.org/10.1002/1097-0142(19880101)61:1%3c195::aid-cncr2820610133%3e3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  22. Conteduca V et al (2021) Flare phenomenon in prostate cancer: recent evidence on new drugs and next generation imaging. Ther Adv Med Oncol 13:1758835920987654. https://doi.org/10.1177/1758835920987654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fizazi K et al (2019) Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol 20:686–700. https://doi.org/10.1016/s1470-2045(19)30082-8

    Article  CAS  PubMed  Google Scholar 

  24. Niaz MJ et al (2021) Review of commonly used prostate specific PET tracers used in prostate cancer imaging in current clinical practice. Clin Imag 79:278–288. https://doi.org/10.1016/j.clinimag.2021.06.006

    Article  Google Scholar 

  25. Patel DN, Karsh LI, Daskivich TJ (2021) Next-generation imaging in localized high-risk prostate cancer. Prostate Cancer Prostatic Dis 24:585–586

    Article  PubMed  Google Scholar 

  26. Armstrong JM et al (2020) (18)F-fluciclovine PET CT detection of biochemical recurrent prostate cancer at specific PSA thresholds after definitive treatment. Urol Oncol 38(636):e631-636.e636. https://doi.org/10.1016/j.urolonc.2020.03.021

    Article  CAS  Google Scholar 

  27. Wu SY et al (2019) Impact of staging (68)Ga-PSMA-11 PET scans on radiation treatment plansin patients with prostate cancer. Urology 125:154–162. https://doi.org/10.1016/j.urology.2018.09.038

    Article  PubMed  Google Scholar 

  28. Zacho HD et al (2020) Added value of (68)Ga-PSMA PET/CT for the detection of bone metastases in patients with newly diagnosed prostate cancer and a previous (99m)Tc bone scintigraphy. EJNMMI Res 10:31. https://doi.org/10.1186/s13550-020-00618-0

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hofman MS et al (2020) Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet (London, England) 395:1208–1216. https://doi.org/10.1016/s0140-6736(20)30314-7

    Article  CAS  PubMed  Google Scholar 

  30. Martorana G et al (2006) 11C-choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol 176:954–960. https://doi.org/10.1016/j.juro.2006.04.015

    Article  CAS  PubMed  Google Scholar 

  31. Sheikhbahaei S et al (2019) (18)F-NaF-PET/CT for the detection of bone metastasis in prostate cancer: a meta-analysis of diagnostic accuracy studies. Ann Nucl Med 33:351–361. https://doi.org/10.1007/s12149-019-01343-y

    Article  CAS  PubMed  Google Scholar 

  32. Perera M et al (2016) Sensitivity, specificity, and predictors of positive (68)Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur Urol 70:926–937. https://doi.org/10.1016/j.eururo.2016.06.021

    Article  PubMed  Google Scholar 

  33. Pan KH et al (2020) Evaluation of 18F-DCFPyL PSMA PET/CT for prostate cancer: a meta-analysis. Front Oncol 10:597422. https://doi.org/10.3389/fonc.2020.597422

    Article  PubMed  Google Scholar 

  34. Kim SJ, Lee SW (2019) The role of (18)F-fluciclovine PET in the management of prostate cancer: a systematic review and meta-analysis. Clin Radiol 74:886–892. https://doi.org/10.1016/j.crad.2019.06.022

    Article  PubMed  Google Scholar 

  35. Hussain M et al (2022) evolving role of prostate-specific membrane antigen-positron emission tomography in metastatic hormone-sensitive prostate cancer: more questions than answers? J Clin Oncol 40:3011–3014. https://doi.org/10.1200/jco.22.00208

    Article  PubMed  Google Scholar 

  36. Jadvar H et al (2022) Appropriate use criteria for prostate-specific membrane antigen PET imaging. J Nucl Med 63:59–68. https://doi.org/10.2967/jnumed.121.263262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakanishi K et al (2022) Whole-body MRI: detecting bone metastases from prostate cancer. Jpn J Radiol 40:229–244. https://doi.org/10.1007/s11604-021-01205-6

    Article  PubMed  Google Scholar 

  38. Shen G, Deng H, Hu S, Jia Z (2014) Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol 43:1503–1513. https://doi.org/10.1007/s00256-014-1903-9

    Article  PubMed  Google Scholar 

  39. Padhani AR et al (2017) METastasis reporting and data system for prostate cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur Urol 71:81–92. https://doi.org/10.1016/j.eururo.2016.05.033

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pricolo P et al (2020) Whole-body magnetic resonance imaging (WB-MRI) reporting with the METastasis Reporting and Data System for Prostate Cancer (MET-RADS-P): inter-observer agreement between readers of different expertise levels. Cancer Imaging 20:77. https://doi.org/10.1186/s40644-020-00350-x

    Article  PubMed  PubMed Central  Google Scholar 

  41. Biloglav Z et al (2020) The analysis of waiting time and utilization of computed tomography and magnetic resonance imaging in Croatia: a nationwide survey. Croat Med J 61:538–546. https://doi.org/10.3325/cmj.2020.61.538

    Article  PubMed  PubMed Central  Google Scholar 

  42. Giri VN et al (2020) Implementation of germline testing for prostate cancer: Philadelphia prostate cancer consensus conference 2019. J Clin Oncol 38:2798–2811. https://doi.org/10.1200/jco.20.00046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng HH, Sokolova AO, Schaeffer EM, Small EJ, Higano CS (2019) Germline and somatic mutations in prostate cancer for the clinician. J Natl Compr Canc Netw 17:515–521. https://doi.org/10.6004/jnccn.2019.7307

    Article  CAS  PubMed  Google Scholar 

  44. Beebe-Dimmer JL, Kapron AL, Fraser AM, Smith KR, Cooney KA (2020) Risk of prostate cancer associated with familial and hereditary cancer syndromes. J Clin Oncol 38:1807–1813. https://doi.org/10.1200/jco.19.02808

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pritchard CC et al (2016) Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375:443–453. https://doi.org/10.1056/NEJMoa1603144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Paller CJ et al (2019) Germline genetic testing in advanced prostate cancer; practices and barriers: survey results from the germline genetics working group of the prostate cancer clinical trials consortium. Clin Genitourin Cancer 17:275-282.e271. https://doi.org/10.1016/j.clgc.2019.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  47. Thorne H et al (2011) Decreased prostate cancer-specific survival of men with BRCA2 mutations from multiple breast cancer families. Cancer Prev Res (Phila) 4:1002–1010. https://doi.org/10.1158/1940-6207.Capr-10-0397

    Article  CAS  PubMed  Google Scholar 

  48. Castro E et al (2015) Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur Urol 68:186–193. https://doi.org/10.1016/j.eururo.2014.10.022

    Article  CAS  PubMed  Google Scholar 

  49. Faraoni I, Graziani G (2018) Role of BRCA mutations in cancer treatment with poly(ADP-ribose) polymerase (PARP) inhibitors. Cancers (Basel). https://doi.org/10.3390/cancers10120487

    Article  PubMed  Google Scholar 

  50. Castro E, Eeles R (2012) The role of BRCA1 and BRCA2 in prostate cancer. Asian J Androl 14:409–414. https://doi.org/10.1038/aja.2011.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheng HH, Pritchard CC, Boyd T, Nelson PS, Montgomery B (2016) Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate cancer. Eur Urol 69:992–995. https://doi.org/10.1016/j.eururo.2015.11.022

    Article  CAS  PubMed  Google Scholar 

  52. Pomerantz MM et al (2017) The association between germline BRCA2 variants and sensitivity to platinum-based chemotherapy among men with metastatic prostate cancer. Cancer 123:3532–3539. https://doi.org/10.1002/cncr.30808

    Article  CAS  PubMed  Google Scholar 

  53. Zheng G et al (2016) Clinical mutational profiling of bone metastases of lung and colon carcinoma and malignant melanoma using next-generation sequencing. Cancer Cytopathol 124:744–753. https://doi.org/10.1002/cncy.21743

    Article  CAS  PubMed  Google Scholar 

  54. Ng SWS, Wyatt AW (2021) Building confidence in circulating tumour DNA assays for metastatic castration-resistant prostate cancer. Nat Rev Urol 18:255–256. https://doi.org/10.1038/s41585-021-00455-3

    Article  CAS  PubMed  Google Scholar 

  55. Siravegna G et al (2019) How liquid biopsies can change clinical practice in oncology. Ann Oncol 30:1580–1590. https://doi.org/10.1093/annonc/mdz227

    Article  CAS  PubMed  Google Scholar 

  56. Choudhury AD (2022) PTEN-PI3K pathway alterations in advanced prostate cancer and clinical implications. Prostate 82(Suppl 1):S60-s72. https://doi.org/10.1002/pros.24372

    Article  CAS  PubMed  Google Scholar 

  57. Kluth LA et al (2014) The hypothalamic-pituitary-gonadal axis and prostate cancer: implications for androgen deprivation therapy. World J Urol 32:669–676. https://doi.org/10.1007/s00345-013-1157-5

    Article  CAS  PubMed  Google Scholar 

  58. Dai C, Heemers H, Sharifi N (2017) Androgen signaling in prostate cancer. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a030452

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shore ND et al (2020) Oral relugolix for androgen-deprivation therapy in advanced prostate cancer. N Engl J Med 382:2187–2196. https://doi.org/10.1056/NEJMoa2004325

    Article  CAS  PubMed  Google Scholar 

  60. Potter GA, Barrie SE, Jarman M, Rowlands MG (1995) Novel steroidal inhibitors of human cytochrome P45017 alpha (17 alpha-hydroxylase-C17,20-lyase): potential agents for the treatment of prostatic cancer. J Med Chem 38:2463–2471. https://doi.org/10.1021/jm00013a022

    Article  CAS  PubMed  Google Scholar 

  61. Danila DC et al (2010) Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. J Clin Oncol 28:1496–1501. https://doi.org/10.1200/jco.2009.25.9259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fizazi K et al (2012) Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 13:983–992. https://doi.org/10.1016/s1470-2045(12)70379-0

    Article  CAS  PubMed  Google Scholar 

  63. Ryan CJ et al (2015) Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 16:152–160. https://doi.org/10.1016/s1470-2045(14)71205-7

    Article  CAS  PubMed  Google Scholar 

  64. Fizazi K et al (2017) Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 377:352–360. https://doi.org/10.1056/NEJMoa1704174

    Article  CAS  PubMed  Google Scholar 

  65. James ND et al (2017) Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med 377:338–351. https://doi.org/10.1056/NEJMoa1702900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. James N et al (2020) 611O Abiraterone acetate plus prednisolone for hormone-naïve prostate cancer (PCa): Long-term results from metastatic (M1) patients in the STAMPEDE randomised trial (NCT00268476). Ann Oncol 31:S509

    Article  Google Scholar 

  67. Lokeshwar SD, Klaassen Z, Saad F (2021) Treatment and trials in non-metastatic castration-resistant prostate cancer. Nat Rev Urol 18:433–442. https://doi.org/10.1038/s41585-021-00470-4

    Article  PubMed  Google Scholar 

  68. Davis ID et al (2019) Enzalutamide with standard first-line therapy in metastatic prostate cancer. N Engl J Med 381:121–131. https://doi.org/10.1056/NEJMoa1903835

    Article  CAS  PubMed  Google Scholar 

  69. Armstrong AJ et al (2019) ARCHES: a randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer. J Clin Oncol 37:2974–2986. https://doi.org/10.1200/jco.19.00799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Armstrong AJ et al (2022) Improved survival with enzalutamide in patients with metastatic hormone-sensitive prostate cancer. J Clin Oncol. https://doi.org/10.1200/jco.22.00193

    Article  PubMed  PubMed Central  Google Scholar 

  71. Clegg NJ et al (2012) ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res 72:1494–1503. https://doi.org/10.1158/0008-5472.Can-11-3948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chi KN et al (2019) Apalutamide for metastatic, castration-sensitive prostate cancer. N Engl J Med 381:13–24. https://doi.org/10.1056/NEJMoa1903307

    Article  CAS  PubMed  Google Scholar 

  73. Chi KN et al (2021) Am Soc Clin Oncol

  74. Mukhtar E, Adhami VM, Mukhtar H (2014) Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 13:275–284. https://doi.org/10.1158/1535-7163.MCT-13-0791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tannock IF et al (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512. https://doi.org/10.1056/NEJMoa040720

    Article  CAS  PubMed  Google Scholar 

  76. Kyriakopoulos CE et al (2018) Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: long-term survival analysis of the randomized phase III E3805 CHAARTED trial. J Clin Oncol 36:1080–1087. https://doi.org/10.1200/jco.2017.75.3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Clarke NW et al (2019) Addition of docetaxel to hormonal therapy in low- and high-burden metastatic hormone sensitive prostate cancer: long-term survival results from the STAMPEDE trial. Ann Oncol 30:1992–2003. https://doi.org/10.1093/annonc/mdz396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. James ND et al (2016) Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet (London, England) 387:1163–1177. https://doi.org/10.1016/s0140-6736(15)01037-5

    Article  CAS  PubMed  Google Scholar 

  79. Gravis G et al (2013) Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncol 14:149–158. https://doi.org/10.1016/s1470-2045(12)70560-0

    Article  CAS  PubMed  Google Scholar 

  80. Fizazi K et al (2022) Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): a multicentre, open-label, randomised, phase 3 study with a 2 × 2 factorial design. Lancet (London, England), https://doi.org/10.1016/s0140-6736(22)00367-1

  81. Moilanen AM et al (2015) Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci Rep 5:12007. https://doi.org/10.1038/srep12007

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zurth C, Sandmann S, Trummel D, Seidel D, Gieschen H (2018) Blood-brain barrier penetration of [14C] darolutamide compared with [14C] enzalutamide in rats using whole body autoradiography. Am Soc Clin Oncol

  83. Smith MR et al (2022) Darolutamide and survival in metastatic, hormone-sensitive prostate cancer. N Engl J Med 386:1132–1142. https://doi.org/10.1056/NEJMoa2119115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee CE et al (2011) A comprehensive bone-health management approach for men with prostate cancer receiving androgen deprivation therapy. Curr Oncol 18:e163-172. https://doi.org/10.3747/co.v18i4.746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yu EY et al (2015) SWOG S0925: a randomized phase ii study of androgen deprivation combined with cixutumumab versus androgen deprivation alone in patients with new metastatic hormone-sensitive prostate cancer. J Clin Oncol 33:1601–1608. https://doi.org/10.1200/jco.2014.59.4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Parker CC et al (2018) Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet (London, England) 392:2353–2366. https://doi.org/10.1016/s0140-6736(18)32486-3

    Article  PubMed  Google Scholar 

  87. Boevé LMS et al (2019) Effect on survival of androgen deprivation therapy alone compared to androgen deprivation therapy combined with concurrent radiation therapy to the prostate in patients with primary bone metastatic prostate cancer in a prospective randomised clinical trial: data from the HORRAD trial. Eur Urol 75:410–418. https://doi.org/10.1016/j.eururo.2018.09.008

    Article  PubMed  Google Scholar 

  88. Wang Y et al (2020) Comparative efficacy of combined radiotherapy, systemic therapy, and androgen deprivation therapy for metastatic hormone-sensitive prostate cancer: a network meta-analysis and systematic review. Front Oncol 10:567616. https://doi.org/10.3389/fonc.2020.567616

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ranasinghe W, Chapin BF, Kim IY, Sooriakumaran P, Lawrentschuk N (2020) The cytoreductive prostatectomy in metastatic prostate cancer: what the individual trials are hoping to answer. BJU Int 125:792–800. https://doi.org/10.1111/bju.15055

    Article  CAS  PubMed  Google Scholar 

  90. Sooriakumaran P et al (2021) Feasibility and safety of radical prostatectomy for oligo-metastatic prostate cancer: the Testing Radical prostatectomy in men with prostate cancer and oligo-Metastases to the bone (TRoMbone) trial. BJU Int. https://doi.org/10.1111/bju.15669

    Article  PubMed  Google Scholar 

  91. Yuh BE et al (2019) Results of phase 1 study on cytoreductive radical prostatectomy in men with newly diagnosed metastatic prostate cancer. Prostate Int 7:102–107. https://doi.org/10.1016/j.prnil.2018.10.002

    Article  PubMed  Google Scholar 

  92. Kim IY et al (2022) Genomic analysis and long-term outcomes of a phase 1 clinical trial on cytoreductive radical prostatectomy. Prostate Int 10:75–79. https://doi.org/10.1016/j.prnil.2022.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  93. Heidenreich A et al (2018) Cytoreductive radical prostatectomy in men with prostate cancer and skeletal metastases. Eur Urol Oncol 1:46–53. https://doi.org/10.1016/j.euo.2018.03.002

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SD Lokeshwar: protocol/project development, data collection and management, data analysis, manuscript writing/editing. AU Choksi: data collection and management, data analysis, manuscript writing/editing. D Haltstuch: manuscript writing/ editing. SN Rahman: manuscript writing/editing. BH Press: manuscript writing/editing. J Syed: protocol/ project development, manuscript editing. ME Hurwitz: manuscript editing. IY Kim: manuscript editing. MS Leapman: protocol/project development, data collection and management, data analysis, manuscript writing/editing.

Corresponding author

Correspondence to Michael S. Leapman.

Ethics declarations

Conflict of interest

Disclosure of potential conflicts of interest: SD Lokeshwar, AU Choksi, D Haltstuch, SN Rahman, BH Press, J syed, ME Hurwitz, IY Kim, MS Leapman have no potential conflict of interest.

Research involving human participants and/or animals

Not applicable to this narrative review.

Informed consent

Not applicable to this narrative review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokeshwar, S.D., Choksi, A.U., Haltstuch, D. et al. Personalizing approaches to the management of metastatic hormone sensitive prostate cancer: role of advanced imaging, genetics and therapeutics. World J Urol 41, 2007–2019 (2023). https://doi.org/10.1007/s00345-023-04409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-023-04409-9

Keywords

Navigation