Abstract
Purpose
To perform a review on the latest evidence related to generated temperatures during Ho:YAG laser use, and present different tools to maintain decreased values, and minimize complication rates during endourological procedures.
Methods
We performed a literature search using PubMed, Scopus, EMBASE, and Cochrane Central Register of Controlled Trials-CENTRAL, restricted to original English-written articles, including animal, artificial model, and human studies. Different keywords were URS, RIRS, ureteroscopy, percutaneous, PCNL, and laser.
Results
Thermal dose (t43) is an acceptable tool to assess possible thermal damage using the generated temperature and the time of laser exposure. A t43 value of more than 120 min leads to a high risk of thermal tissue injury and at temperatures higher than 43 °C Ho:YAG laser use becomes hazardous due to an exponentially increased cytotoxic effect. Using open continuous flow, or chilled irrigation, temperatures remain lower than 45 °C. By utilizing high-power (> 40 W) or shorter laser pulse, temperatures rise above the accepted threshold, but adding a ureteral access sheath (UAS) helps to maintain acceptable values.
Conclusions
Open irrigation systems, chilled irrigation, UASs, laser power < 40 W, and shorter on/off laser activation intervals help to keep intrarenal temperatures at accepted values during URS and PCNL.
This is a preview of subscription content, access via your institution.

References
Herrmann TR, Liatsikos EN, Nagele U, Traxer O, Merseburger AS (2012) EAU guidelines on laser technologies. Eur Urol 61(4):783–795. https://doi.org/10.1016/j.eururo.2012.01.010
Schmidt-Kloiber H, Reichel E, Schöffmann H (1985) Laserinduced shock-wave lithotripsy (LISL). Biomed Tech (Berl) 30(7–8):173–181. https://doi.org/10.1515/bmte.1985.30.7-8.173
Hofmann R, Hartung R (1988) Use of pulsed Nd:YAG laser in the ureter. Urol Clinics N Am 15(3):369–375
Adkins WC, Dulabon DA, Chorazy ZJ, Lund PS, Johnson LM, Jones WV (1994) Consider Ho:YAG for low-cost, effective laser lithotripsy. Clin Laser Mon 12(9):139–141
Larizgoitia I, Pons JM (1999) A systematic review of the clinical efficacy and effectiveness of the holmium:YAG laser in urology. BJU Int 84(1):1–9. https://doi.org/10.1046/j.1464-410x.1999.00096.x
Patel AP, Knudsen BE (2014) Optimizing use of the holmium:YAG laser for surgical management of urinary lithiasis. Curr Urol Rep 15(4):397. https://doi.org/10.1007/s11934-014-0397-2
Johnson DE, Cromeens DM, Price RE (1992) Use of the holmium:YAG laser in urology. Lasers Surg Med 12(4):353–363. https://doi.org/10.1002/lsm.1900120402
Kronenberg P, Traxer O (2015) Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers. World J Urol 33(4):463–469. https://doi.org/10.1007/s00345-014-1395-1
Aldoukhi AH, Ghani KR, Hall TL, Roberts WW (2017) Thermal response to high-power holmium laser lithotripsy. J Endourol 31(12):1308–1312. https://doi.org/10.1089/end.2017.0679
Wollin DA, Carlos EC, Tom WR, Simmons WN, Preminger GM, Lipkin ME (2018) Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model. J Endourol 32(1):59–63. https://doi.org/10.1089/end.2017.0658
Aboumarzouk OM, Monga M, Kata SG, Traxer O, Somani BK (2012) Flexible ureteroscopy and laser lithotripsy for stones > 2 cm: a systematic review and meta-analysis. J Endourol 26(10):1257–1263. https://doi.org/10.1089/end.2012.0217
Ventimiglia E, Pauchard F, Quadrini F, Sindhubodee S, Kamkoum H, Jiménez Godínez A, Doizi S, Traxer O (2021) High- and low-power laser lithotripsy achieves similar results: a systematic review and meta-analysis of available clinical series. J Endourol 35(8):1146–1152. https://doi.org/10.1089/end.2020.0090
Kronenberg P, Somani B (2018) Advances in lasers for the treatment of stones—a systematic review. Curr Urol Rep 19(6):45. https://doi.org/10.1007/s11934-018-0807-y
Chan KF, Pfefer TJ, Teichman JM, Welch AJ (2001) A perspective on laser lithotripsy: the fragmentation processes. J Endourol 15(3):257–273. https://doi.org/10.1089/089277901750161737
Sea J, Jonat LM, Chew BH, Qiu J, Wang B, Hoopman J, Milner T, Teichman JM (2012) Optimal power settings for Holmium:YAG lithotripsy. J Urol 187(3):914–919. https://doi.org/10.1016/j.juro.2011.10.147
Zhong P, Tong HL, Cocks FH, Pearle MS, Preminger GM (1998) Transient cavitation and acoustic emission produced by different laser lithotripters. J Endourol 12(4):371–378. https://doi.org/10.1089/end.1998.12.371
Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10(6):787–800. https://doi.org/10.1016/0360-3016(84)90379-1
Yarmolenko PS, Moon EJ, Landon C, Manzoor A, Hochman DW, Viglianti BL, Dewhirst MW (2011) Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia 27(4):320–343. https://doi.org/10.3109/02656736.2010.534527
Aldoukhi AH, Black KM, Hall TL, Ghani KR, Maxwell AD, MacConaghy B, Roberts WW (2020) Defining thermally safe laser lithotripsy power and irrigation parameters: in vitro model. J Endourol 34(1):76–81. https://doi.org/10.1089/end.2019.0499
Dau JJ, Hall TL, Maxwell AD, Ghani KR, Roberts WW (2021) Effect of chilled irrigation on caliceal fluid temperature and time to thermal injury threshold during laser lithotripsy: in vitro model. J Endourol 35(5):700–705. https://doi.org/10.1089/end.2020.0896
Kallidonis P, Amanatides L, Panagopoulos V, Kyriazis I, Vrettos T, Fligou F, Kamal W, Liatsikos EN (2016) Does the heat generation by the thulium: yttrium aluminum garnet laser in the irrigation fluid allow its use on the upper urinary tract? An experimental study. J Endourol 30(4):422–427. https://doi.org/10.1089/end.2015.0252
Hein S, Petzold R, Schoenthaler M, Wetterauer U, Miernik A (2018) Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model. World J Urol 36(9):1469–1475. https://doi.org/10.1007/s00345-018-2303-x
Noureldin YA, Farsari E, Ntasiotis P, Adamou C, Vagionis A, Vrettos T, Liatsikos EN, Kallidonis P (2021) Effects of irrigation parameters and access sheath size on the intra-renal temperature during flexible ureteroscopy with a high-power laser. World J Urol 39(4):1257–1262. https://doi.org/10.1007/s00345-020-03287-9
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds)(2019) Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane, Available from www.training.cochrane.org/handbook
Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535
Aldoukhi AH, Hall TL, Ghani KR, Maxwell AD, MacConaghy B, Roberts WW (2018) Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model. J Endourol 32(8):724–729. https://doi.org/10.1089/end.2018.0395
Molina WR, Silva IN, Donalisio da Silva R, Gustafson D, Sehrt D, Kim FJ (2015) Influence of saline on temperature profile of laser lithotripsy activation. J Endourol 29(2):235–239. https://doi.org/10.1089/end.2014.0305
Butticè S, Sener TE, Proietti S, Dragos L, Tefik T, Doizi S, Traxer O (2016) Temperature changes inside the kidney: what happens during holmium:yttrium–aluminium-garnet laser usage? J Endourol 30(5):574–579. https://doi.org/10.1089/end.2015.0747
Maxwell AD, MacConaghy B, Harper JD, Aldoukhi AH, Hall TL, Roberts WW (2019) Simulation of laser lithotripsy-induced heating in the urinary tract. J Endourol 33(2):113–119. https://doi.org/10.1089/end.2018.0485
Wang XK, Jiang ZQ, Tan J, Yin GM, Huang K (2019) Thermal effect of holmium laser lithotripsy under ureteroscopy. Chin Med J 132(16):2004–2007. https://doi.org/10.1097/cm9.0000000000000300
Winship B, Terry R, Boydston K, Carlos E, Wollin D, Peters C, Li J, Preminger G, Lipkin M (2019) Holmium:yttrium-aluminum-garnet laser pulse type affects irrigation temperatures in a benchtop ureteral model. J Endourol 33(11):896–901. https://doi.org/10.1089/end.2019.0496
Winship B, Wollin D, Carlos E, Peters C, Li J, Terry R, Boydston K, Preminger GM, Lipkin ME (2019) The rise and fall of high temperatures during ureteroscopic holmium laser lithotripsy. J Endourol 33(10):794–799. https://doi.org/10.1089/end.2019.0084
Hein S, Petzold R, Suarez-Ibarrola R, Müller PF, Schoenthaler M, Miernik A (2020) Thermal effects of Ho:YAG laser lithotripsy during retrograde intrarenal surgery and percutaneous nephrolithotomy in an ex vivo porcine kidney model. World J Urol 38(3):753–760. https://doi.org/10.1007/s00345-019-02808-5
Liang H, Liang L, Yu Y, Huang B, Chen J, Wang C, Zhu Z, Liang X (2020) Thermal effect of holmium laser during ureteroscopic lithotripsy. BMC Urol 20(1):69. https://doi.org/10.1186/s12894-020-00639-w
Aldoukhi AH, Dau JJ, Majdalany SE, Hall TL, Ghani KR, Hollingsworth JM, Ambani SN, Dauw CA, Roberts WW (2021) Patterns of laser activation during ureteroscopic lithotripsy: effects on caliceal fluid temperature and thermal dose. J Endourol. https://doi.org/10.1089/end.2020.1067
Teng J, Wang Y, Jia Z, Guan Y, Fei W, Ai X (2021) Temperature profiles of calyceal irrigation fluids during flexible ureteroscopic Ho:YAG laser lithotripsy. Int Urol Nephrol 53(3):415–419. https://doi.org/10.1007/s11255-020-02665-x
Molina WR, Marchini GS, Pompeo A, Sehrt D, Kim FJ, Monga M (2014) Determinants of holmium:yttrium-aluminum-garnet laser time and energy during ureteroscopic laser lithotripsy. Urology 83(4):738–744. https://doi.org/10.1016/j.urology.2013.11.017
Schafer SA, Durville FM, Jassemnejad B, Bartels KE, Powell RC (1994) Mechanisms of biliary stone fragmentation using the Ho:YAG laser. IEEE Trans Biomed Eng 41(3):276–283. https://doi.org/10.1109/10.284946
Teichman JM, Vassar GJ, Glickman RD (1998) Holmium:yttrium-aluminum-garnet lithotripsy efficiency varies with stone composition. Urology 52(3):392–397. https://doi.org/10.1016/s0090-4295(98)00239-8
Urano M, Kuroda M, Nishimura Y (1999) For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperthermia 15(2):79–107. https://doi.org/10.1080/026567399285765
Vassar GJ, Teichman JM, Glickman RD (1998) Holmium:YAG lithotripsy efficiency varies with energy density. J Urol 160(2):471–476. https://doi.org/10.1016/s0022-5347(01)62927-6
Miller MW, Ziskin MC (1989) Biological consequences of hyperthermia. Ultrasound Med Biol 15(8):707–722. https://doi.org/10.1016/0301-5629(89)90111-7
Dickson JA, Calderwood SK (1980) Temperature range and selective sensitivity of tumors to hyperthermia: a critical review. Ann N Y Acad Sci 335:180–205. https://doi.org/10.1111/j.1749-6632.1980.tb50749.x
Gross AJ, Netsch C (2017) Editorial Comment on: Thermal response to high-power holmium laser lithotripsy by Aldoukhi et al. J Endourol 31(12):1313. https://doi.org/10.1089/end.2017.0809
Tekgul ZT, Pektas S, Yildirim U, Karaman Y, Cakmak M, Ozkarakas H, Gonullu M (2015) A prospective randomized double-blind study on the effects of the temperature of irrigation solutions on thermoregulation and postoperative complications in percutaneous nephrolithotomy. J Anesth 29(2):165–169. https://doi.org/10.1007/s00540-014-1888-5
Zhong W, Leto G, Wang L, Zeng G (2015) Systemic inflammatory response syndrome after flexible ureteroscopic lithotripsy: a study of risk factors. J Endourol 29(1):25–28. https://doi.org/10.1089/end.2014.0409
Tokas T, Skolarikos A, Herrmann TRW, Nagele U (2019) Pressure matters 2: intrarenal pressure ranges during upper-tract endourological procedures. World J Urol 37(1):133–142. https://doi.org/10.1007/s00345-018-2379-3
Tokas T, Herrmann TRW, Skolarikos A, Nagele U (2019) Pressure matters: intrarenal pressures during normal and pathological conditions, and impact of increased values to renal physiology. World J Urol 37(1):125–131. https://doi.org/10.1007/s00345-018-2378-4
US Department of Health and Human Services. Com- pliance Guide for Laser Products. Rockville, MD: US Department of Health and Human Services, 1992, p. 12.
Roudkenar MH, Halabian R, Roushandeh AM, Nourani MR, Masroori N, Ebrahimi M, Nikogoftar M, Rouhbakhsh M, Bahmani P, Najafabadi AJ, Shokrgozar MA (2009) Lipocalin 2 regulation by thermal stresses: protective role of Lcn2/NGAL against cold and heat stresses. Exp Cell Res 315(18):3140–3151. https://doi.org/10.1016/j.yexcr.2009.08.019
Author information
Authors and Affiliations
Contributions
PR: data management, data analysis, manuscript writing. BKS: interpreting data, manuscript editing. UN: interpreting data. TRWH: interpreting data. TT: protocol/project development, data management, data analysis, manuscript writing.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Human and animal rights and informed consent
This review does not involve human participants and/or animals.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Rice, P., Somani, B.K., Nagele, U. et al. Generated temperatures and thermal laser damage during upper tract endourological procedures using the holmium: yttrium–aluminum-garnet (Ho:YAG) laser: a systematic review of experimental studies. World J Urol 40, 1981–1992 (2022). https://doi.org/10.1007/s00345-022-03992-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00345-022-03992-7