Skip to main content

Advertisement

Log in

Radiomics to better characterize small renal masses

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Radiomics is a specific field of medical research that uses programmable recognition tools to extract objective information from standard images to combine with clinical data, with the aim of improving diagnostic, prognostic, and predictive accuracy beyond standard visual interpretation. We performed a narrative review of radiomic applications that may support improved characterization of small renal masses (SRM). The main focus of the review was to identify and discuss methods which may accurately differentiate benign from malignant renal masses, specifically between renal cell carcinoma (RCC) subtypes and from angiomyolipoma without visible fat (fat-poor AML) and oncocytoma. Furthermore, prediction of grade, sarcomatoid features, and gene mutations would be of importance in terms of potential clinical utility in prognostic stratification and selecting personalised patient management strategies.

Methods

A detailed search of original articles was performed using the PubMed–MEDLINE database until 20 September 2020 to identify the English literature relevant to radiomics applications in renal tumour assessment. In total, 42 articles were included in the analysis in 3 main categories related to SRM: prediction of benign versus malignant SRM, subtypes, and nuclear grade, and other features of aggressiveness.

Conclusion

Overall, studies reported the superiority of radiomics over expert radiological assessment, but were mainly of retrospective design and therefore of low-quality evidence. However, it is clear that radiomics is an attractive modality that has the potential to improve the non-invasive diagnostic accuracy of SRM imaging and prediction of its natural behaviour. Further prospective validation studies of radiomics are needed to augment management algorithms of SRM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lubner MG (2020) Radiomics and artificial intelligence for renal mass characterization. Radiol Clin N Am 58(5):995–1008. https://doi.org/10.1016/j.rcl.2020.06.001

    Article  PubMed  Google Scholar 

  2. Ursprung S, Beer L, Bruining A, Woitek R, Stewart GD, Gallagher FA, Sala E (2020) Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma—a systematic review and meta-analysis. Eur Radiol 30(6):3558–3566. https://doi.org/10.1007/s00330-020-06666-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Asselin C, Finelli A, Breau RH, Mallick R, Kapoor A, Rendon RA, Tanguay S, Pouliot F, Fairey A, Lavallée LT, Bladou F, Kawakami J, So AI, Richard PO (2020) Does renal tumor biopsies for small renal carcinoma increase the risk of upstaging on final surgery pathology report and the risk of recurrence? Urol Oncol. https://doi.org/10.1016/j.urolonc.2020.06.001

    Article  PubMed  Google Scholar 

  4. Schieda N, Lim RS, McInnes MDF, Thomassin I, Renard-Penna R, Tavolaro S, Cornelis FH (2018) Characterization of small (<4cm) solid renal masses by computed tomography and magnetic resonance imaging: current evidence and further development. Diagn Interv Imaging 99(7–8):443–455. https://doi.org/10.1016/j.diii.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  5. Kim JH, Li S, Khandwala Y, Chung KJ, Park HK, Chung BI (2019) Association of prevalence of benign pathologic findings after partial nephrectomy with preoperative imaging patterns in the United States from 2007 to 2014. JAMA Surg 154(3):225–231. https://doi.org/10.1001/jamasurg.2018.4602

    Article  PubMed  Google Scholar 

  6. Marconi L, Dabestani S, Lam TB, Hofmann F, Stewart F, Norrie J, Bex A, Bensalah K, Canfield SE, Hora M, Kuczyk MA, Merseburger AS, Mulders PFA, Powles T, Staehler M, Ljungberg B, Volpe A (2016) Systematic review and meta-analysis of diagnostic accuracy of percutaneous renal tumour biopsy. Eur Urol 69(4):660–673. https://doi.org/10.1016/j.eururo.2015.07.072

    Article  PubMed  Google Scholar 

  7. Herrera-Caceres JO, Finelli A, Jewett MAS (2019) Renal tumor biopsy: indicators, technique, safety, accuracy results, and impact on treatment decision management. World J Urol 37(3):437–443. https://doi.org/10.1007/s00345-018-2373-9

    Article  PubMed  Google Scholar 

  8. Abrahams NA, Tamboli P (2005) Oncocytic renal neoplasms: diagnostic considerations. Clin Lab Med 25 (2):317–339, vi. doi:https://doi.org/10.1016/j.cll.2005.01.006

  9. Patel HD, Nichols PE, Su ZT, Gupta M, Cheaib JG, Allaf ME, Pierorazio PM (2020) Renal mass biopsy is associated with reduction in surgery for early-stage kidney cancer. Urology 135:76–81. https://doi.org/10.1016/j.urology.2019.08.043

    Article  PubMed  Google Scholar 

  10. Neves JB, Withington J, Fowler S, Patki P, Barod R, Mumtaz F, O’Brien T, Aitchison M, Bex A, Tran MGB (2018) Contemporary surgical management of renal oncocytoma: a nation’s outcome. BJU Int 121(6):893–899. https://doi.org/10.1111/bju.14159

    Article  PubMed  Google Scholar 

  11. McAlpine K, Breau RH, Stacey D, Knee C, Jewett MAS, Violette PD, Richard PO, Cagiannos I, Morash C, Lavallée LT (2020) Shared decision-making for the management of small renal masses—development and acceptability testing of a novel patient decision aid. Can Urol Assoc J. https://doi.org/10.5489/cuaj.6575

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goldberg H, Ajaj R, Cáceres JOH, Berlin A, Chandrasekar T, Klaassen Z, Wallis CJD, Ahmad AE, Leao R, Petrella AR, Kachura JR, Fleshner N, Matthew A, Finelli A, Jewett MAS, Hamilton RJ (2020) Psychological distress associated with active surveillance in patients younger than 70 with a small renal mass. Urol Oncol 38(6):603.e617-603.e625. https://doi.org/10.1016/j.urolonc.2020.02.015

    Article  Google Scholar 

  13. Sotimehin AE, Patel HD, Alam R, Gorin MA, Johnson MH, Chang P, Wagner AA, McKiernan JM, Allaf ME, Pierorazio PM (2019) Selecting patients with small renal masses for active surveillance: a domain based score from a prospective cohort study. J Urol 201(5):886–892. https://doi.org/10.1097/ju.0000000000000033

    Article  PubMed  Google Scholar 

  14. Finelli A, Cheung DC, Al-Matar A, Evans AJ, Morash CG, Pautler SE, Siemens DR, Tanguay S, Rendon RA, Gleave ME, Drachenberg DE, Chin JL, Fleshner NE, Haider MA, Kachura JR, Sykes J, Jewett MAS (2020) Small renal mass surveillance: histology-specific growth rates in a biopsy-characterized cohort. Eur Urol 78(3):460–467. https://doi.org/10.1016/j.eururo.2020.06.053

    Article  PubMed  Google Scholar 

  15. Ball MW, An JY, Gomella PT, Gautam R, Ricketts CJ, Vocke CD, Schmidt LS, Merino MJ, Srinivasan R, Malayeri AA, Metwalli AR, Linehan WM (2020) Growth rates of genetically defined renal tumors: implications for active surveillance and intervention. J Clin Oncol 38(11):1146–1153. https://doi.org/10.1200/jco.19.02263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yap FY, Varghese BA, Cen SY, Hwang DH, Lei X, Desai B, Lau C, Yang LL, Fullenkamp AJ, Hajian S, Rivas M, Gupta MN, Quinn BD, Aron M, Desai MM, Aron M, Oberai AA, Gill IS, Duddalwar VA (2020) Shape and texture-based radiomics signature on CT effectively discriminates benign from malignant renal masses. Eur Radiol. https://doi.org/10.1007/s00330-020-07158-0

    Article  PubMed  Google Scholar 

  17. Erdim C, Yardimci AH, Bektas CT, Kocak B, Koca SB, Demir H, Kilickesmez O (2020) Prediction of benign and malignant solid renal masses: machine learning-based CT texture analysis. Acad Radiol. https://doi.org/10.1016/j.acra.2019.12.015

    Article  PubMed  Google Scholar 

  18. Zhang GM, Shi B, Xue HD, Ganeshan B, Sun H, Jin ZY (2019) Can quantitative CT texture analysis be used to differentiate subtypes of renal cell carcinoma? Clin Radiol 74(4):287–294. https://doi.org/10.1016/j.crad.2018.11.009

    Article  PubMed  Google Scholar 

  19. Zhou L, Zhang Z, Chen YC, Zhao ZY, Yin XD, Jiang HB (2019) A deep learning-based radiomics model for differentiating benign and malignant renal tumors. Transl Oncol 12(2):292–300. https://doi.org/10.1016/j.tranon.2018.10.012

    Article  PubMed  Google Scholar 

  20. Uhlig J, Biggemann L, Nietert MM, Beißbarth T, Lotz J, Kim HS, Trojan L, Uhlig A (2020) Discriminating malignant and benign clinical T1 renal masses on computed tomography: a pragmatic radiomics and machine learning approach. Medicine (Baltimore) 99(16):e19725. https://doi.org/10.1097/md.0000000000019725

    Article  Google Scholar 

  21. Sun XY, Feng QX, Xu X, Zhang J, Zhu FP, Yang YH, Zhang YD (2020) Radiologic-radiomic machine learning models for differentiation of benign and malignant solid renal masses: comparison with expert-level radiologists. AJR Am J Roentgenol 214(1):W44-w54. https://doi.org/10.2214/ajr.19.21617

    Article  PubMed  Google Scholar 

  22. Xi IL, Zhao Y, Wang R, Chang M, Purkayastha S, Chang K, Huang RY, Silva AC, Vallières M, Habibollahi P, Fan Y, Zou B, Gade TP, Zhang PJ, Soulen MC, Zhang Z, Bai HX, Stavropoulos SW (2020) Deep learning to distinguish benign from malignant renal lesions based on routine MR imaging. Clin Cancer Res 26(8):1944–1952. https://doi.org/10.1158/1078-0432.Ccr-19-0374

    Article  PubMed  Google Scholar 

  23. Yang R, Wu J, Sun L, Lai S, Xu Y, Liu X, Ma Y, Zhen X (2020) Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat. Eur Radiol 30(2):1254–1263. https://doi.org/10.1007/s00330-019-06384-5

    Article  PubMed  Google Scholar 

  24. Feng Z, Rong P, Cao P, Zhou Q, Zhu W, Yan Z, Liu Q, Wang W (2018) Machine learning-based quantitative texture analysis of CT images of small renal masses: differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Eur Radiol 28(4):1625–1633. https://doi.org/10.1007/s00330-017-5118-z

    Article  PubMed  Google Scholar 

  25. Nie P, Yang G, Wang Z, Yan L, Miao W, Hao D, Wu J, Zhao Y, Gong A, Cui J, Jia Y, Niu H (2020) A CT-based radiomics nomogram for differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma. Eur Radiol 30(2):1274–1284. https://doi.org/10.1007/s00330-019-06427-x

    Article  PubMed  Google Scholar 

  26. Lee H, Hong H, Kim J, Jung DC (2018) Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation. Med Phys 45(4):1550–1561. https://doi.org/10.1002/mp.12828

    Article  PubMed  Google Scholar 

  27. Cui EM, Lin F, Li Q, Li RG, Chen XM, Liu ZS, Long WS (2019) Differentiation of renal angiomyolipoma without visible fat from renal cell carcinoma by machine learning based on whole-tumor computed tomography texture features. Acta Radiol 60(11):1543–1552. https://doi.org/10.1177/0284185119830282

    Article  PubMed  Google Scholar 

  28. Hodgdon T, McInnes MD, Schieda N, Flood TA, Lamb L, Thornhill RE (2015) Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images? Radiology 276(3):787–796. https://doi.org/10.1148/radiol.2015142215

    Article  PubMed  Google Scholar 

  29. Lee HS, Hong H, Jung DC, Park S, Kim J (2017) Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Med Phys 44(7):3604–3614. https://doi.org/10.1002/mp.12258

    Article  CAS  PubMed  Google Scholar 

  30. Razik A, Goyal A, Sharma R, Kandasamy D, Seth A, Das P, Ganeshan B (2020) MR texture analysis in differentiating renal cell carcinoma from lipid-poor angiomyolipoma and oncocytoma. Br J Radiol. https://doi.org/10.1259/bjr.20200569

    Article  PubMed  Google Scholar 

  31. Coy H, Hsieh K, Wu W, Nagarajan MB, Young JR, Douek ML, Brown MS, Scalzo F, Raman SS (2019) Deep learning and radiomics: the utility of Google TensorFlowTM Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Abdom Radiol (NY) 44(6):2009–2020. https://doi.org/10.1007/s00261-019-01929-0

    Article  Google Scholar 

  32. Yu H, Scalera J, Khalid M, Touret AS, Bloch N, Li B, Qureshi MM, Soto JA, Anderson SW (2017) Texture analysis as a radiomic marker for differentiating renal tumors. Abdom Radiol (NY) 42(10):2470–2478. https://doi.org/10.1007/s00261-017-1144-1

    Article  Google Scholar 

  33. Li Y, Huang X, Xia Y, Long L (2020) Value of radiomics in differential diagnosis of chromophobe renal cell carcinoma and renal oncocytoma. Abdom Radiol (NY) 45(10):3193–3201. https://doi.org/10.1007/s00261-019-02269-9

    Article  Google Scholar 

  34. Li ZC, Zhai G, Zhang J, Wang Z, Liu G, Wu GY, Liang D, Zheng H (2019) Differentiation of clear cell and non-clear cell renal cell carcinomas by all-relevant radiomics features from multiphase CT: a VHL mutation perspective. Eur Radiol 29(8):3996–4007. https://doi.org/10.1007/s00330-018-5872-6

    Article  PubMed  Google Scholar 

  35. Han S, Hwang SI, Lee HJ (2019) The classification of renal cancer in 3-phase CT images using a deep learning method. J Digit Imaging 32(4):638–643. https://doi.org/10.1007/s10278-019-00230-2

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kocak B, Yardimci AH, Bektas CT, Turkcanoglu MH, Erdim C, Yucetas U, Koca SB, Kilickesmez O (2018) Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation. Eur J Radiol 107:149–157. https://doi.org/10.1016/j.ejrad.2018.08.014

    Article  PubMed  Google Scholar 

  37. Wang W, Cao K, Jin S, Zhu X, Ding J, Peng W (2020) Differentiation of renal cell carcinoma subtypes through MRI-based radiomics analysis. Eur Radiol 30(10):5738–5747. https://doi.org/10.1007/s00330-020-06896-5

    Article  PubMed  Google Scholar 

  38. Goyal A, Razik A, Kandasamy D, Seth A, Das P, Ganeshan B, Sharma R (2019) Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study. Abdom Radiol (NY) 44(10):3336–3349. https://doi.org/10.1007/s00261-019-02122-z

    Article  Google Scholar 

  39. Said D, Hectors SJ, Wilck E, Rosen A, Stocker D, Bane O, Beksaç AT, Lewis S, Badani K, Taouli B (2020) Characterization of solid renal neoplasms using MRI-based quantitative radiomics features. Abdom Radiol (NY) 45(9):2840–2850. https://doi.org/10.1007/s00261-020-02540-4

    Article  Google Scholar 

  40. Hoang UN, Mojdeh Mirmomen S, Meirelles O, Yao J, Merino M, Metwalli A, Marston Linehan W, Malayeri AA (2018) Assessment of multiphasic contrast-enhanced MR textures in differentiating small renal mass subtypes. Abdom Radiol (NY) 43(12):3400–3409. https://doi.org/10.1007/s00261-018-1625-x

    Article  Google Scholar 

  41. Meng X, Shu J, Xia Y, Yang R (2020) A CT-based radiomics approach for the differential diagnosis of sarcomatoid and clear cell renal cell carcinoma. Biomed Res Int 2020:7103647. https://doi.org/10.1155/2020/7103647

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shu J, Tang Y, Cui J, Yang R, Meng X, Cai Z, Zhang J, Xu W, Wen D, Yin H (2018) Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade. Eur J Radiol 109:8–12. https://doi.org/10.1016/j.ejrad.2018.10.005

    Article  PubMed  Google Scholar 

  43. Lin F, Cui EM, Lei Y, Luo LP (2019) CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma. Abdom Radiol (NY) 44(7):2528–2534. https://doi.org/10.1007/s00261-019-01992-7

    Article  Google Scholar 

  44. Shu J, Wen D, Xi Y, Xia Y, Cai Z, Xu W, Meng X, Liu B, Yin H (2019) Clear cell renal cell carcinoma: machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade. Eur J Radiol 121:108738. https://doi.org/10.1016/j.ejrad.2019.108738

    Article  PubMed  Google Scholar 

  45. He X, Wei Y, Zhang H, Zhang T, Yuan F, Huang Z, Han F, Song B (2020) Grading of clear cell renal cell carcinomas by using machine learning based on artificial neural networks and radiomic signatures extracted from multidetector computed tomography images. Acad Radiol 27(2):157–168. https://doi.org/10.1016/j.acra.2019.05.004

    Article  PubMed  Google Scholar 

  46. Sun X, Liu L, Xu K, Li W, Huo Z, Liu H, Shen T, Pan F, Jiang Y, Zhang M (2019) Prediction of ISUP grading of clear cell renal cell carcinoma using support vector machine model based on CT images. Medicine (Baltimore) 98(14):e15022. https://doi.org/10.1097/md.0000000000015022

    Article  Google Scholar 

  47. Cui E, Li Z, Ma C, Li Q, Lei Y, Lan Y, Yu J, Zhou Z, Li R, Long W, Lin F (2020) Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics. Eur Radiol 30(5):2912–2921. https://doi.org/10.1007/s00330-019-06601-1

    Article  PubMed  Google Scholar 

  48. Dwivedi DK, Xi Y, Kapur P, Madhuranthakam AJ, Lewis MA, Udayakumar D, Rasmussen R, Yuan Q, Bagrodia A, Margulis V, Fulkerson M, Brugarolas J, Cadeddu JA, Pedrosa I (2020) Magnetic resonance imaging radiomics analyses for prediction of high-grade histology and necrosis in clear cell renal cell carcinoma: preliminary experience. Clin Genitourin Cancer. https://doi.org/10.1016/j.clgc.2020.05.011

    Article  PubMed  Google Scholar 

  49. Ding J, Xing Z, Jiang Z, Chen J, Pan L, Qiu J, Xing W (2018) CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Eur J Radiol 103:51–56. https://doi.org/10.1016/j.ejrad.2018.04.013

    Article  PubMed  Google Scholar 

  50. Nazari M, Shiri I, Hajianfar G, Oveisi N, Abdollahi H, Deevband MR, Oveisi M, Zaidi H (2020) Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Radiol Med 125(8):754–762. https://doi.org/10.1007/s11547-020-01169-z

    Article  PubMed  Google Scholar 

  51. Bektas CT, Kocak B, Yardimci AH, Turkcanoglu MH, Yucetas U, Koca SB, Erdim C, Kilickesmez O (2019) Clear cell renal cell carcinoma: machine learning-based quantitative computed tomography texture analysis for prediction of Fuhrman nuclear grade. Eur Radiol 29(3):1153–1163. https://doi.org/10.1007/s00330-018-5698-2

    Article  PubMed  Google Scholar 

  52. Lin F, Ma C, Xu J, Lei Y, Li Q, Lan Y, Sun M, Long W, Cui E (2020) A CT-based deep learning model for predicting the nuclear grade of clear cell renal cell carcinoma. Eur J Radiol 129:109079. https://doi.org/10.1016/j.ejrad.2020.109079

    Article  PubMed  Google Scholar 

  53. Lee HW, Cho HH, Joung JG, Jeon HG, Jeong BC, Jeon SS, Lee HM, Nam DH, Park WY, Kim CK, Seo SI, Park H (2020) Integrative radiogenomics approach for risk assessment of post-operative metastasis in pathological T1 renal cell carcinoma: a pilot retrospective cohort study. Cancers (Basel). https://doi.org/10.3390/cancers12040866

    Article  PubMed  PubMed Central  Google Scholar 

  54. Feng Z, Zhang L, Qi Z, Shen Q, Hu Z, Chen F (2020) Identifying BAP1 mutations in clear-cell renal cell carcinoma by CT radiomics: preliminary findings. Front Oncol 10:279. https://doi.org/10.3389/fonc.2020.00279

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kocak B, Durmaz ES, Kaya OK, Kilickesmez O (2020) Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas. Acta Radiol 61(6):856–864. https://doi.org/10.1177/0284185119881742

    Article  PubMed  Google Scholar 

  56. Kocak B, Durmaz ES, Ates E, Ulusan MB (2019) Radiogenomics in clear cell renal cell carcinoma: machine learning-based high-dimensional quantitative CT texture analysis in predicting PBRM1 mutation status. AJR Am J Roentgenol 212(3):W55-w63. https://doi.org/10.2214/ajr.18.20443

    Article  PubMed  Google Scholar 

  57. Chen X, Zhou Z, Hannan R, Thomas K, Pedrosa I, Kapur P, Brugarolas J, Mou X, Wang J (2018) Reliable gene mutation prediction in clear cell renal cell carcinoma through multi-classifier multi-objective radiogenomics model. Phys Med Biol 63(21):215008. https://doi.org/10.1088/1361-6560/aae5cd

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ghosh P, Tamboli P, Vikram R, Rao A (2015) Imaging-genomic pipeline for identifying gene mutations using three-dimensional intra-tumor heterogeneity features. J Med Imaging (Bellingham) 2(4):041009. https://doi.org/10.1117/1.Jmi.2.4.041009

    Article  Google Scholar 

  59. Corwin MT, Altinmakas E, Asch D, Bishop KA, Boge M, Curci NE, Ebada M, Elkassem AA, Fananapazir G, Fetzer DT, Gaballah AH, Gandhi D, Kampalath R, Lee S, Markese M, McInnes MD, Patel NU, Remer EM, Rosasco S, Schieda N, Sweet DE, Smith AD, Taylor E, Silverman SG, Davenport MS (2020) Clinical importance of incidental homogeneous renal masses 10–40 mm and 21–39 Hounsfield units at portal venous-phase CT: a 12-institution retrospective cohort study. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.20.24245

    Article  PubMed  Google Scholar 

  60. Kocak B, Kaya OK, Erdim C, Kus EA, Kilickesmez O (2020) Artificial intelligence in renal mass characterization: a systematic review of methodologic items related to modeling, performance evaluation, clinical utility, and transparency. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.20.22847

    Article  PubMed  Google Scholar 

  61. Kocak B, Durmaz ES, Erdim C, Ates E, Kaya OK, Kilickesmez O (2020) Radiomics of renal masses: systematic review of reproducibility and validation strategies. AJR Am J Roentgenol 214(1):129–136. https://doi.org/10.2214/ajr.19.21709

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

TK data collection and manuscript writing. JBN data collection and manuscript writing. MT data collection and manuscript writing. AB project development, data collection, and manuscript writing.

Corresponding author

Correspondence to Axel Bex.

Ethics declarations

Conflict of interest

No conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuusk, T., Neves, J.B., Tran, M. et al. Radiomics to better characterize small renal masses. World J Urol 39, 2861–2868 (2021). https://doi.org/10.1007/s00345-021-03602-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-021-03602-y

Keywords

Navigation