Skip to main content

Advertisement

Log in

Novel PET imaging methods for prostate cancer

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Introduction

Prostate cancer is a common neoplasm but conventional imaging methods such as CT and bone scan are often insensitive. A new class of PET agents have emerged to diagnose and manage prostate cancer.

Methods

The relevant literature on PET imaging agents for prostate cancer was reviewed.

Results

This review shows a broad range of PET imaging agents, the most successful of which is prostate specific membrane antigen (PSMA) PET. Other agents either lack the sensitivity or specificity of PSMA PET.

Conclusion

Among the available PET agents for prostate cancer, PSMA PET has emerged as the leader. It is likely to have great impact on the diagnosis, staging and management of prostate cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J et al (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49(6):1374–1403

    CAS  PubMed  Google Scholar 

  2. Cimitan M, Bortolus R, Morassut S et al (2006) [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 33(12):1387–1398

    PubMed  Google Scholar 

  3. Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN (2006) Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 47(2):262–269

    PubMed  Google Scholar 

  4. Jadvar H (2011) Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med 52(1):81–89

    PubMed  Google Scholar 

  5. McCarthy M, Siew T, Campbell A et al (2011) (1)(8)F-Fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging. Eur J Nucl Med Mol Imaging. 38(1):14–22

    PubMed  Google Scholar 

  6. Piccardo A, Paparo F, Piccazzo R et al (2014) Value of fused 18F-Choline-PET/MRI to evaluate prostate cancer relapse in patients showing biochemical recurrence after EBRT: preliminary results. Biomed Res Int 2014:103718

    PubMed  PubMed Central  Google Scholar 

  7. Fanti S, Minozzi S, Castellucci P et al (2016) PET/CT with (11)C-choline for evaluation of prostate cancer patients with biochemical recurrence: meta-analysis and critical review of available data. Eur J Nucl Med Mol Imaging 43(1):55–69

    CAS  PubMed  Google Scholar 

  8. Graziani T, Ceci F, Castellucci P et al (2016) (11)C-Choline PET/CT for restaging prostate cancer. Results from 4,426 scans in a single-centre patient series. Eur J Nucl Med Mol Imaging 43(11):1971–1979

    CAS  PubMed  Google Scholar 

  9. Ceci F, Castellucci P, Mamede M et al (2013) (11)C-Choline PET/CT in patients with hormone-resistant prostate cancer showing biochemical relapse after radical prostatectomy. Eur J Nucl Med Mol Imaging 40(2):149–155

    CAS  PubMed  Google Scholar 

  10. Soyka JD, Muster MA, Schmid DT et al (2012) Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging 39(6):936–943

    CAS  PubMed  Google Scholar 

  11. Goldstein J, Even-Sapir E, Ben-Haim S et al (2017) Does choline PET/CT Change the management of prostate cancer patients with biochemical failure? Am J Clin Oncol 40:256–259

    CAS  PubMed  Google Scholar 

  12. Heidenreich A, Bastian PJ, Bellmunt J et al (2014) EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 65(2):467–479

    CAS  PubMed  Google Scholar 

  13. Guo Y, Wang L, Hu J, Feng D, Xu L (2018) Diagnostic performance of choline PET/CT for the detection of bone metastasis in prostate cancer: a systematic review and meta-analysis. PLoS ONE 13(9):e0203400

    PubMed  PubMed Central  Google Scholar 

  14. Oka S, Hattori R, Kurosaki F et al (2007) A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med 48(1):46–55

    CAS  PubMed  Google Scholar 

  15. Asano Y, Inoue Y, Ikeda Y et al (2011) Phase I clinical study of NMK36: a new PET tracer with the synthetic amino acid analogue anti-[18F]FACBC. Ann Nucl Med 25(6):414–418

    CAS  PubMed  Google Scholar 

  16. Nanni C, Schiavina R, Rubello D et al (2013) The detection of disease relapse after radical treatment for prostate cancer: is anti-3-18F-FACBC PET/CT a promising option? Nucl Med Commun 34(9):831–833

    PubMed  Google Scholar 

  17. Ren J, Yuan L, Wen G, Yang J (2016) The value of anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT in the diagnosis of recurrent prostate carcinoma: a meta-analysis. Acta Radiol 57(4):487–493

    PubMed  Google Scholar 

  18. Suzuki H, Inoue Y, Fujimoto H et al (2016) Diagnostic performance and safety of NMK36 (trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid)-PET/CT in primary prostate cancer: multicenter Phase IIb clinical trial. Jpn J Clin Oncol 46(2):152–162

    PubMed  Google Scholar 

  19. Schuster DM, Taleghani PA, Nieh PT et al (2013) Characterization of primary prostate carcinoma by anti-1-amino-2-[(18)F] -fluorocyclobutane-1-carboxylic acid (anti-3-[(18)F] FACBC) uptake. Am J Nucl Med Mol Imaging 3(1):85–96

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jambor I, Kuisma A, Kahkonen E et al (2018) Prospective evaluation of (18)F-FACBC PET/CT and PET/MRI versus multiparametric MRI in intermediate- to high-risk prostate cancer patients (FLUCIPRO trial). Eur J Nucl Med Mol Imaging 45:355–364

    PubMed  Google Scholar 

  21. Turkbey B, Mena E, Shih J et al (2014) Localized prostate cancer detection with 18F FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology 270:849–856

    PubMed  Google Scholar 

  22. Schuster DM, Nieh PT, Jani AB et al (2014) Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J Urol 191(5):1446–1453

    PubMed  Google Scholar 

  23. Bach-Gansmo T, Nanni C, Nieh PT et al (2017) Multisite experience of the safety, detection rate and diagnostic performance of fluciclovine ((18)F) positron emission tomography/computerized tomography imaging in the staging of biochemically recurrent prostate cancer. J Urol 197(3 Pt 1):676–683

    PubMed  Google Scholar 

  24. Odewole OA, Tade FI, Nieh PT et al (2016) Recurrent prostate cancer detection with anti-3-[(18)F]FACBC PET/CT: comparison with CT. Eur J Nucl Med Mol Imaging 43(10):1773–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Akin-Akintayo OO, Jani AB, Odewole O et al (2017) Change in salvage radiotherapy management based on guidance with FACBC (Fluciclovine) PET/CT in postprostatectomy recurrent prostate cancer. Clin Nucl Med 42(1):e22–e28

    PubMed  PubMed Central  Google Scholar 

  26. Andriole GL, Kostakoglu L, Chau A et al (2019) The impact of positron emission tomography with (18)F-fluciclovine on the management of patients with biochemical recurrence of prostate cancer: results from the LOCATE trial. J Urol 201:322–331

    PubMed  PubMed Central  Google Scholar 

  27. Nanni C, Zanoni L, Pultrone C et al (2016) (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging 43(9):1601–1610

    CAS  PubMed  Google Scholar 

  28. Nanni C, Schiavina R, Brunocilla E et al (2015) 18F-Fluciclovine PET/CT for the detection of prostate cancer relapse: a comparison to 11C-choline PET/CT. Clin Nucl Med 40(8):e386–e391

    PubMed  Google Scholar 

  29. Schuster DM, Nanni C, Fanti S et al (2014) Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med 55(12):1986–1992

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pesapane F, Czarniecki M, Suter MB, Turkbey B, Villeirs G (2018) Imaging of distant metastases of prostate cancer. Med Oncol 35(11):148

    PubMed  Google Scholar 

  31. Calais J, Fendler WP, Herrmann K, Eiber M, Ceci F (2018) Comparison of (68)Ga-PSMA-11 and (18)F-Fluciclovine PET/CT in a case series of 10 patients with prostate cancer recurrence. J Nucl Med 59(5):789–794

    CAS  PubMed  Google Scholar 

  32. Ghosh A, Heston WD (2004) Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 91:528–539

    CAS  PubMed  Google Scholar 

  33. Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP (1998) Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 82(11):2256–2261

    CAS  PubMed  Google Scholar 

  34. Mannweiler S, Amersdorfer P, Trajanoski S, Terrett JA, King D, Mehes G (2009) Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol Oncol Res 15(2):167–172

    CAS  PubMed  Google Scholar 

  35. Ross JS, Sheehan CE, Fisher HA et al (2003) Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res 9(17):6357–6362

    CAS  PubMed  Google Scholar 

  36. Fendler WP, Eiber M, Beheshti M et al (2017) (68)Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging 44(6):1014–1024

    PubMed  Google Scholar 

  37. Malik D, Kumar R, Mittal BR, Singh H, Bhattacharya A, Singh SK (2018) 68 Ga-labeled PSMA uptake in nonprostatic malignancies: has the time come to remove “PS” from PSMA? Clin Nucl Med 43(7):529–532

    PubMed  Google Scholar 

  38. Sodee DB, Malguria N, Faulhaber P, Resnick MI, Albert J, Bakale G (2000) Multicenter ProstaScint imaging findings in 2154 patients with prostate cancer. The ProstaScint Imaging Centers. Urology. 56(6):988–993

    CAS  PubMed  Google Scholar 

  39. Pandit-Taskar N, O’Donoghue JA, Durack JC et al (2015) A phase I/II study for analytic validation of 89Zr-J591 ImmunoPET as a molecular imaging agent for metastatic prostate cancer. Clin Cancer Res 21(23):5277–5285

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Prasad V, Steffen IG, Diederichs G, Makowski MR, Wust P, Brenner W (2016) Biodistribution of [(68)Ga]PSMA-HBED-CC in patients with prostate cancer: characterization of uptake in normal organs and tumour lesions. Mol Imaging Biol 18:428–436

    CAS  PubMed  Google Scholar 

  41. Giesel FL, Sterzing F, Schlemmer HP et al (2016) Intra-individual comparison of (68)Ga-PSMA-11-PET/CT and multi-parametric MR for imaging of primary prostate cancer. Eur J Nucl Med Mol Imaging 43(8):1400–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Eiber M, Weirich G, Holzapfel K et al (2016) Simultaneous (68)Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol 70(5):829–836

    CAS  PubMed  Google Scholar 

  43. Zamboglou C, Drendel V, Jilg CA et al (2017) Comparison of (68)Ga-HBED-CC PSMA-PET/CT and multiparametric MRI for gross tumour volume detection in patients with primary prostate cancer based on slice by slice comparison with histopathology. Theranostics 7(1):228–237

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Uprimny C, Kroiss AS, Decristoforo C et al (2017) (68)Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nucl Med Mol Imaging 44(6):941–949

    CAS  PubMed  Google Scholar 

  45. Rowe SP, Gage KL, Faraj SF et al (2015) (1)(8)F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J Nucl Med 56(7):1003–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Turkbey B, Mena E, Lindenberg L et al (2017) 18F-DCFBC Prostate-Specific Membrane Antigen-Targeted PET/CT Imaging in Localized Prostate Cancer: correlation With Multiparametric MRI and Histopathology. Clin Nucl Med 42(10):735–740

    PubMed  PubMed Central  Google Scholar 

  47. Fendler WP, Schmidt DF, Wenter V et al (2016) 68Ga-PSMA PET/CT detects the location and extent of primary prostate cancer. J Nucl Med 57(11):1720–1725

    CAS  PubMed  Google Scholar 

  48. Zamboglou C, Schiller F, Fechter T et al (2016) (68)Ga-HBED-CC-PSMA PET/CT versus histopathology in primary localized prostate cancer: a voxel-wise comparison. Theranostics 6(10):1619–1628

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hovels AM, Heesakkers RA, Adang EM et al (2008) The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 63(4):387–395

    CAS  PubMed  Google Scholar 

  50. Maurer T, Gschwend JE, Rauscher I et al (2016) Diagnostic Efficacy of (68)Gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol 195(5):1436–1443

    PubMed  Google Scholar 

  51. Kim SJ, Lee SW, Ha HK (2019) Diagnostic performance of radiolabeled prostate-specific membrane antigen positron emission tomography/computed tomography for primary lymph node staging in newly diagnosed intermediate to high-risk prostate cancer patients: a systematic review and meta-analysis. Urol Int 102:27–36

    CAS  PubMed  Google Scholar 

  52. Herlemann A, Wenter V, Kretschmer A et al (2016) (68)Ga-PSMA positron emission tomography/computed tomography provides accurate staging of lymph node regions prior to lymph node dissection in patients with prostate cancer. Eur Urol 70(4):553–557

    CAS  PubMed  Google Scholar 

  53. Budaus L, Leyh-Bannurah SR, Salomon G et al (2016) Initial experience of (68)Ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol 69:393–396

    PubMed  Google Scholar 

  54. Zacho HD, Nielsen JB, Haberkorn U, Stenholt L, Petersen LJ (2017) (68)Ga-PSMA PET/CT for the detection of bone metastases in prostate cancer: a systematic review of the published literature. Clin Physiol Funct Imaging. https://doi.org/10.1111/cpf.12480

  55. Janssen JC, Woythal N, Meissner S et al (2017) [(68)Ga]PSMA-HBED-CC uptake in osteolytic, osteoblastic, and bone marrow metastases of prostate cancer patients. Mol Imaging Biol 19(6):933–943

    CAS  PubMed  Google Scholar 

  56. King CR (2012) The timing of salvage radiotherapy after radical prostatectomy: a systematic review. Int J Radiat Oncol Biol Phys 84(1):104–111

    PubMed  Google Scholar 

  57. Giesel FL, Fiedler H, Stefanova M et al (2015) PSMA PET/CT with Glu-urea-Lys-(Ahx)-[(6)(8)Ga(HBED-CC)] versus 3D CT volumetric lymph node assessment in recurrent prostate cancer. Eur J Nucl Med Mol Imaging 42(12):1794–1800

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rauscher I, Maurer T, Beer AJ et al (2016) Value of 68Ga-PSMA HBED-CC PET for the assessment of lymph node metastases in prostate cancer patients with biochemical recurrence: comparison with histopathology after salvage lymphadenectomy. J Nucl Med 57(11):1713–1719

    CAS  PubMed  Google Scholar 

  59. Perera M, Papa N, Christidis D et al (2016) Sensitivity, specificity, and predictors of positive (68)Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur Urol 70(6):926–937

    PubMed  Google Scholar 

  60. von Eyben FE, Picchio M, von Eyben R, Rhee H, Bauman G (2018) (68)Ga-labeled prostate-specific membrane antigen ligand positron emission tomography/computed tomography for prostate cancer: a systematic review and meta-analysis. Eur Urol Focus 4:686–693

    Google Scholar 

  61. Afshar-Oromieh A, Holland-Letz T, Giesel FL et al (2017) Diagnostic performance of (68)Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging 44(8):1258–1268

    PubMed  PubMed Central  Google Scholar 

  62. Ceci F, Castellucci P, Graziani T et al (2019) (68)Ga-PSMA-11 PET/CT in recurrent prostate cancer: efficacy in different clinical stages of PSA failure after radical therapy. Eur J Nucl Med Mol Imaging 46:31–39

    CAS  PubMed  Google Scholar 

  63. Verburg FA, Pfister D, Heidenreich A et al (2016) Extent of disease in recurrent prostate cancer determined by [(68)Ga]PSMA-HBED-CC PET/CT in relation to PSA levels, PSA doubling time and Gleason score. Eur J Nucl Med Mol Imaging 43:397–403

    CAS  PubMed  Google Scholar 

  64. Jilg CA, Drendel V, Rischke HC et al (2017) Diagnostic accuracy of Ga-68-HBED-CC-PSMA-Ligand-PET/CT before salvage lymph node dissection for recurrent prostate cancer. Theranostics 7(6):1770–1780

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Clarebrough E, Duncan C, Christidis D, Lavoipierre A, Lawrentschuk N (2019) PSMA-PET guided hook-wire localization of nodal metastases in prostate cancer: a targeted approach. World J Urol 37:1251–1254

    PubMed  Google Scholar 

  66. Porres D, Pfister D, Thissen A et al (2017) The role of salvage extended lymph node dissection in patients with rising PSA and PET/CT scan detected nodal recurrence of prostate cancer. Prostate Cancer Prostatic Dis 20(1):85–92

    CAS  PubMed  Google Scholar 

  67. Schottelius M, Wirtz M, Eiber M, Maurer T, Wester HJ (2015) [(111)In]PSMA-I&T: expanding the spectrum of PSMA-I&T applications towards SPECT and radioguided surgery. EJNMMI Res 5(1):68

    PubMed  PubMed Central  Google Scholar 

  68. Siriwardana A, Thompson J, van Leeuwen PJ et al (2017) Initial multicentre experience of (68) gallium-PSMA PET/CT guided robot-assisted salvage lymphadenectomy: acceptable safety profile but oncological benefit appears limited. BJU Int 120(5):673–681

    CAS  PubMed  Google Scholar 

  69. Guler OC, Engels B, Onal C et al (2018) The feasibility of prostate-specific membrane antigen positron emission tomography(PSMA PET/CT)-guided radiotherapy in oligometastatic prostate cancer patients. Clin Transl Oncol 20(4):484–490

    CAS  PubMed  Google Scholar 

  70. Bluemel C, Linke F, Herrmann K et al (2016) Impact of (68)Ga-PSMA PET/CT on salvage radiotherapy planning in patients with prostate cancer and persisting PSA values or biochemical relapse after prostatectomy. EJNMMI Res 6(1):78

    PubMed  PubMed Central  Google Scholar 

  71. Calais J, Czernin J, Cao M et al (2018) (68)Ga-PSMA-11 PET/CT mapping of prostate cancer biochemical recurrence after radical prostatectomy in 270 patients with a PSA Level of less than 1.0 ng/mL: impact on salvage radiotherapy planning. J Nucl Med 59(2):230–237

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hruby G, Eade T, Kneebone A et al (2017) Delineating biochemical failure with (68)Ga-PSMA-PET following definitive external beam radiation treatment for prostate cancer. Radiother Oncol 122(1):99–102

    CAS  PubMed  Google Scholar 

  73. Emmett L, van Leeuwen PJ, Nandurkar R et al (2017) Treatment Outcomes from (68)Ga-PSMA PET/CT-informed salvage radiation treatment in men with rising PSA After radical prostatectomy: prognostic value of a negative PSMA PET. J Nucl Med 58(12):1972–1976

    CAS  PubMed  Google Scholar 

  74. Afshar-Oromieh A, Zechmann CM, Malcher A et al (2014) Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41(1):11–20

    CAS  PubMed  Google Scholar 

  75. Morigi JJ, Stricker PD, van Leeuwen PJ et al (2015) Prospective comparison of 18F-Fluoromethylcholine versus 68 Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med 56(8):1185–1190

    CAS  PubMed  Google Scholar 

  76. Pfister D, Porres D, Heidenreich A et al (2016) Detection of recurrent prostate cancer lesions before salvage lymphadenectomy is more accurate with (68)Ga-PSMA-HBED-CC than with (18)F-Fluoroethylcholine PET/CT. Eur J Nucl Med Mol Imaging 43(8):1410–1417

    PubMed  Google Scholar 

  77. Hofman MS, Violet J, Hicks RJ et al (2018) [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 19(6):825–833

    CAS  PubMed  Google Scholar 

  78. Dietlein F, Kobe C, Neubauer S et al (2017) PSA-stratified performance of (18)F- and (68)Ga-PSMA PET in patients with biochemical recurrence of prostate cancer. J Nucl Med 58(6):947–952

    CAS  PubMed  Google Scholar 

  79. Roach PJ, Francis R, Emmett L et al (2018) The impact of 68 Ga-PSMA PET/CT on management intent in prostate cancer: results of an Australian Prospective Multicenter Study. J Nucl Med 59(1):82–88

    CAS  PubMed  Google Scholar 

  80. Shakespeare TP (2015) Effect of prostate-specific membrane antigen positron emission tomography on the decision-making of radiation oncologists. Radiat Oncol 10:233

    PubMed  PubMed Central  Google Scholar 

  81. Dewes S, Schiller K, Sauter K et al (2016) Integration of (68)Ga-PSMA-PET imaging in planning of primary definitive radiotherapy in prostate cancer: a retrospective study. Radiat Oncol 11:73

    PubMed  PubMed Central  Google Scholar 

  82. Sterzing F, Kratochwil C, Fiedler H et al (2016) (68)Ga-PSMA-11 PET/CT: a new technique with high potential for the radiotherapeutic management of prostate cancer patients. Eur J Nucl Med Mol Imaging 43(1):34–41

    CAS  PubMed  Google Scholar 

  83. Albisinni S, Artigas C, Aoun F et al (2017) Clinical impact of (68) Ga-prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) in patients with prostate cancer with rising prostate-specific antigen after treatment with curative intent: preliminary analysis of a multidisciplinary approach. BJU Int 120(2):197–203

    CAS  PubMed  Google Scholar 

  84. Beattie BJ, Smith-Jones PM, Jhanwar YS et al (2010) Pharmacokinetic assessment of the uptake of 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J Nucl Med 51(2):183–192

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rathkopf DE, Morris MJ, Fox JJ et al (2013) Phase I study of ARN-509, a novel antiandrogen, in the treatment of castration-resistant prostate cancer. J Clin Oncol 31(28):3525–3530

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dehdashti F, Picus J, Michalski JM et al (2005) Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging 32:344–350

    PubMed  Google Scholar 

  87. Larson SM, Morris M, Gunther I et al (2004) Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45:366–373

    CAS  PubMed  Google Scholar 

  88. Vargas HA, Wassberg C, Fox JJ et al (2014) Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology 271(1):220–229

    PubMed  Google Scholar 

  89. Fox JJ, Gavane SC, Blanc-Autran E et al (2018) Positron emission tomography/computed tomography-based assessments of androgen receptor expression and glycolytic activity as a prognostic biomarker for metastatic castration-resistant prostate cancer. JAMA Oncol. 4(2):217–224

    PubMed  Google Scholar 

  90. Wieser G, Mansi R, Grosu AL et al (2014) Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist—from mice to men. Theranostics 4(4):412–419

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sah BR, Burger IA, Schibli R et al (2015) Dosimetry and first clinical evaluation of the new 18F-radiolabeled bombesin analogue BAY 864367 in patients with prostate cancer. J Nucl Med 56:372–378

    CAS  PubMed  Google Scholar 

  92. Roivainen A, Kahkonen E, Luoto P et al (2013) Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of 68Ga bombesin antagonist BAY 86-7548 in healthy men. J Nucl Med 54(6):867–872

    CAS  PubMed  Google Scholar 

  93. Cescato R, Maina T, Nock B et al (2008) Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 49(2):318–326

    CAS  PubMed  Google Scholar 

  94. Baratto L, Jadvar H, Iagaru A (2018) Prostate cancer theranostics targeting gastrin-releasing peptide receptors. Mol Imaging Biol 20(4):501–509

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mansi R, Wang X, Forrer F et al (2009) Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 15(16):5240–5249

    CAS  PubMed  Google Scholar 

  96. Mansi R, Fleischmann A, Macke HR, Reubi JC (2013) Targeting GRPR in urological cancers—from basic research to clinical application. Nat Rev Urol 10(4):235–244

    CAS  PubMed  Google Scholar 

  97. Chatalic KL, Franssen GM, van Weerden WM et al (2014) Preclinical comparison of Al18F- and 68 Ga-labeled gastrin-releasing peptide receptor antagonists for PET imaging of prostate cancer. J Nucl Med 55(12):2050–2056

    CAS  PubMed  Google Scholar 

  98. Kahkonen E, Jambor I, Kemppainen J et al (2013) In vivo imaging of prostate cancer using [68 Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res 19(19):5434–5443

    PubMed  Google Scholar 

  99. Zhang J, Niu G, Fan X et al (2018) PET using a GRPR antagonist 68Ga-RM26 in healthy volunteers and prostate cancer patients. J Nucl Med 59(6):922–928

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Minamimoto R, Sonni I, Hancock S et al (2018) Prospective evaluation of (68)Ga-RM2 PET/MRI in patients with biochemical recurrence of prostate cancer and negative findings on conventional imaging. J Nucl Med 59(5):803–808

    CAS  PubMed  Google Scholar 

  101. Minamimoto R, Hancock S, Schneider B et al (2016) Pilot comparison of (6)(8)Ga-RM2 PET and (6)(8)Ga-PSMA-11 PET in patients with biochemically recurrent prostate cancer. J Nucl Med 57(4):557–562

    CAS  PubMed  Google Scholar 

  102. Maina T, Bergsma H, Kulkarni HR et al (2016) Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [(6)(8)Ga]SB3 and PET/CT. Eur J Nucl Med Mol Imaging 43(5):964–973

    CAS  PubMed  Google Scholar 

  103. Nock BA, Kaloudi A, Lymperis E et al (2017) Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: preclinical and first clinical results. J Nucl Med 58(1):75–80

    CAS  PubMed  Google Scholar 

  104. Rasch MG, Lund IK, Almasi CE, Hoyer-Hansen G (2008) Intact and cleaved uPAR forms: diagnostic and prognostic value in cancer. Front Biosci 13:6752–6762

    CAS  PubMed  Google Scholar 

  105. Shariat SF, Roehrborn CG, McConnell JD et al (2007) Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis. J Clin Oncol 25(4):349–355

    CAS  PubMed  Google Scholar 

  106. Persson M, Liu H, Madsen J, Cheng Z, Kjaer A (2013) First (18)F-labeled ligand for PET imaging of uPAR: in vivo studies in human prostate cancer xenografts. Nucl Med Biol 40(5):618–624

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Persson M, Skovgaard D, Brandt-Larsen M et al (2015) First-in-human uPAR PET: imaging of cancer aggressiveness. Theranostics 5(12):1303–1316

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Skovgaard D, Persson M, Brandt-Larsen M et al (2017) Safety, dosimetry, and tumor detection ability of (68)Ga-NOTA-AE105: first-in-human study of a novel radioligand for uPAR PET imaging. J Nucl Med 58:379–386

    CAS  PubMed  Google Scholar 

  109. Tripathi S, Trabulsi EJ, Gomella L et al (2016) VPAC1 targeted (64)Cu-TP3805 positron emission tomography imaging of prostate cancer: preliminary evaluation in man. Urology 88:111–118

    PubMed  Google Scholar 

  110. Doran MG, Watson PA, Cheal SM et al (2014) Annotating STEAP1 regulation in prostate cancer with 89Zr immuno-PET. J Nucl Med 55(12):2045–2049

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This review received no outside funding support.

Author information

Authors and Affiliations

Authors

Contributions

EM: Data collection and manuscript writing. PCB: Data collection and manuscript writing. SR-B: Data collection and manuscript writing. MG: Data collection and manuscript writing. MA: Data collection and manuscript writing. PLC: Project development, data collection, and manuscript writing.

Corresponding author

Correspondence to Peter Choyke.

Ethics declarations

Conflict of interest

Dr. Soroush Rais-Bahrami has received research funding from Genomic Health Inc, Blue Earth Diagnostics, and Astellas. Soroush Rais-Bahrami serves as a consultant for Philips/InVivo Corp, Blue Earth Diagnostics, Genomic Health Inc, Intuitive Surgical, and Bayer Healthcare. Other authors have no disclosures.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mena, E., Black, P.C., Rais-Bahrami, S. et al. Novel PET imaging methods for prostate cancer. World J Urol 39, 687–699 (2021). https://doi.org/10.1007/s00345-020-03344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-020-03344-3

Keywords

Navigation