Abstract
Objectives
To estimate the total energy needed to ablate 1mm3 of stone volume (Joules/mm3) during flexible ureteroscopic lithotripsy using a low-power Ho:YAG laser device, as a proxy of lithotripsy efficacy.
Patients and methods
We selected 30 patients submitted to flexible ureteroscopy for renal stones whose volume was bigger than 500 mm3. A 35 W Ho:YAG laser (Dornier Medilas H Solvo 35, Germany) was used for every procedure with a 272 µm laser fiber. We recorded laser parameters, the total energy delivered by the laser fiber, the time from the first laser pulse until the last one (lithotripsy time), and the active laser time as provided by the machine. We then estimated J/mm3 values and determinants, along with ablation speed (mm3/s), and laser activity (ratio between laser active time and lithotripsy time).
Results
Median (IQR) stone volume and stone density were respectively 1599 (630–3502) mm3 and 1040 (753–1275) Hounsfield units (HU). In terms of laser parameters, median (IQR) energy and frequency were 0.6 (0.4–0.8) J and 15 (15–18) Hz. Median (IQR) total delivered energy and lithotripsy time were 37,050 (13,375–57,680) J and 68 (36–88) min, respectively. Median (IQR) J/mm3 and ablation speed were, respectively, 19 (14–24) J/mm3 and 0.7 (0.4–0.9) mm3/s. The laser was active during 84% (70–95%) of the total lithotripsy time. HU density > 1000 was associated with reduced efficacy.
Conclusions
It is possible to perform laser lithotripsy using a low-power laser device with a virtually continuous laser activity. The estimation of the pre-operative parameters as well as the J/mm3 values are fundamental for a proper pre-operatory planning.
This is a preview of subscription content,
to check access.


References
Türk C, Skolarikos A, Neisius A, Petrik A, Seitz C, Thomas K et al (2019) European association of urology (EAU) guidelines on urolithiasis, 2019 Update
Kronenberg P, Somani B (2018) Advances in lasers for the treatment of stones—a systematic review. Curr Urol Rep 19(6):45. https://doi.org/10.1007/s11934-018-0807-y
Ito H, Kawahara T, Terao H, Ogawa T, Yao M, Kubota Y et al (2012) Predictive value of attenuation coefficients measured as Hounsfield units on noncontrast computed tomography during flexible ureteroscopy with holmium laser lithotripsy: a single-center experience. J Endourol 26:1125–1130. https://doi.org/10.1089/end.2012.0154
Ito H, Kuroda S, Kawahara T, Makiyama K, Yao M, Matsuzaki J (2015) Clinical factors prolonging the operative time of flexible ureteroscopy for renal stones: a single-center analysis. Urolithiasis 43:467–475. https://doi.org/10.1007/s00240-015-0789-x
Kuroda S, Ito H, Sakamaki K, Tabei T, Kawahara T, Fujikawa A et al (2018) A new prediction model for operative time of flexible ureteroscopy with lithotripsy for the treatment of renal stones. PLoS ONE 13(2):e0192597. https://doi.org/10.1371/journal.pone.0192597
Mekayten M, Lorber A, Katafigiotis I, Sfoungaristos S, Leotsakos I, Heifetz EM et al (2019) Will stone density stop being a key factor in endourology? The impact of stone density on laser time using lumenis laser p120w and standard 20 W laser: a comparative study. J Endourol 33:585–589. https://doi.org/10.1089/end.2019.0181
Pradere B, Doizi S, Proietti S, Brachlow J, Traxer O (2018) Evaluation of guidelines for surgical management of urolithiasis. J Urol 199:1267–1271. https://doi.org/10.1016/j.juro.2017.11.111
Molina WR, Marchini GS, Pompeo A, Sehrt D, Kim FJ, Monga M (2014) Determinants of holmium:yttrium-aluminum-garnet laser time and energy during ureteroscopic laser lithotripsy. Urology 83:738–744. https://doi.org/10.1016/j.urology.2013.11.017
Ofude M, Shima T, Yotsuyanagi S, Ikeda D (2017) Stone attenuation values measured by average hounsfield units and stone volume as predictors of total laser energy required during ureteroscopic lithotripsy using holmium:yttrium-aluminum-garnet lasers. Urology 102:48–53. https://doi.org/10.1016/j.urology.2016.10.029
Wiener SV, Deters LA, Pais VMJ (2012) Effect of stone composition on operative time during ureteroscopic holmium:yttrium-aluminum-garnet laser lithotripsy with active fragment retrieval. Urology 80:790–794. https://doi.org/10.1016/j.urology.2012.05.040
Pauchard F, Ventimiglia E, Traxer O. Letter to the Editor RE: Mekayten et al. (2019) Will stone density stop being a key factor in endourology? The impact of stone density on laser time using lumenis laser p120w and standard 20w laser: a comparative study (From: Mekayten M, Lorber A, Katafigiotis I, et al. J Endourol 33:585–589; https://doi.org/10.1089/end.2019.0181). J Endourol 2019. https://doi.org/10.1089/end.2019.0438
Ventimiglia E, Traxer O (2019) What is Moses effect: an historical perspective. J Endourol 35:353–357. https://doi.org/10.1089/end.2019.0012
Aldoukhi AH, Roberts WW, Hall TL, Teichman JMH, Ghani KR (2018) Understanding the popcorn effect during holmium laser lithotripsy for dusting. Urology 122:52–57. https://doi.org/10.1016/j.urology.2018.08.031
Aldoukhi AH, Ghani KR, Hall TL, Roberts WW (2017) Thermal response to high-power holmium laser lithotripsy. J Endourol 31:1308–1312. https://doi.org/10.1089/end.2017.0679
Aldoukhi AH, Hall TL, Ghani KR, Maxwell AD, MacConaghy B, Roberts WW (2018) Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model. J Endourol 32:724–729. https://doi.org/10.1089/end.2018.0395
Maxwell AD, MacConaghy B, Harper JD, Aldoukhi AH, Hall TL, Roberts WW (2018) Simulation of laser lithotripsy-induced heating in the urinary tract. J Endourol 33:113–119. https://doi.org/10.1089/end.2018.0485
Winship B, Wollin DA, Carlos EC, Peters C, Li J, Terry R et al (2019) The rise and fall of high temperatures during ureteroscopic holmium laser lithotripsy. J Endourol. https://doi.org/10.1089/end.2019.0084
Osther PJS (2018) Risks of flexible ureterorenoscopy: pathophysiology and prevention. Urolithiasis 46:59–67. https://doi.org/10.1007/s00240-017-1018-6
Aldoukhi AH, Black KM, Ghani KR (2019) Emerging laser techniques for the management of stones. Urol Clin North Am 46:193–205. https://doi.org/10.1016/j.ucl.2018.12.005
Finch W, Johnston R, Shaida N, Winterbottom A, Wiseman O (2014) Measuring stone volume—three-dimensional software reconstruction or an ellipsoid algebra formula? BJU Int 113:610–614. https://doi.org/10.1111/bju.12456
Merigot de Treigny O, Bou Nasr E, Almont T, Tack I, Rischmann P, Soulie M et al (2015) The cumulated stone diameter: a limited tool for stone burden estimation. Urology 86:477–481. https://doi.org/10.1016/j.urology.2015.06.018
De Coninck V, Traxer O (2018) The time has come to report stone burden in terms of volume instead of largest diameter. J Endourol 32:265–266. https://doi.org/10.1089/end.2017.0886
Wilhelm K, Miernik A, Hein S, Schlager D, Adams F, Benndorf M et al (2018) Validating automated kidney stone volumetry in ct and mathematical correlation with estimated stone volume based on diameter. J Endourol 32:659–664. https://doi.org/10.1089/end.2018.0058
Liden M, Andersson T, Broxvall M, Thunberg P, Geijer H (2012) Urinary stone size estimation: a new segmentation algorithm-based CT method. Eur Radiol 22:731–737. https://doi.org/10.1007/s00330-011-2309-x
Sridhar S, Kumaravel N (2001) Automatic segmentation of medical images for renal calculi and analysis. Biomed Sci Instrum 37:405–409
Marsousi M, Plataniotis KN, Stergiopoulos S (2014) Shape-based kidney detection and segmentation in three-dimensional abdominal ultrasound images. Conf Proc. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2890–4. doi:10.1109/EMBC.2014.6944227.
Acknowledgements
Prof. Olivier Traxer is a consultant for Coloplast, Rocamed, Olympus, EMS, Boston Scientific and IPG
Funding
None.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ventimiglia, E., Pauchard, F., Gorgen, A.R.H. et al. How do we assess the efficacy of Ho:YAG low-power laser lithotripsy for the treatment of upper tract urinary stones? Introducing the Joules/mm3 and laser activity concepts. World J Urol 39, 891–896 (2021). https://doi.org/10.1007/s00345-020-03241-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00345-020-03241-9