Skip to main content
Log in

3D imaging applications for robotic urologic surgery: an ESUT YAUWP review

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Context

Despite the current era of precision surgery in robotics, an unmet need still remains for optimal surgical planning and navigation for most genitourinary diseases. 3D virtual reconstruction of 2D cross-sectional imaging has been increasingly adopted to help surgeons better understand the surgical anatomy.

Objectives

To provide a short overview of the most recent evidence on current applications of 3D imaging in robotic urologic surgery.

Evidence acquisition

A non-systematic review of the literature was performed. Medline, PubMed, the Cochrane Database and Embase were screened for studies regarding the use of 3D models in robotic urology.

Evidence synthesis

3D reconstruction technology creates 3D virtual and printed models that first appeared in urology to aid surgical planning and intraoperative navigation, especially in the treatment of oncological diseases of the prostate and kidneys. The latest revolution in the field involves models overlapping onto the real anatomy and performing augmented reality procedures.

Conclusion

3D virtual/printing technology has entered daily practice in some tertiary centres, especially for the management of urological tumours. The 3D models can be virtual or printed, and can help the surgeon in surgical planning, physician education and training, and patient counselling. Moreover, integration of robotic platforms with the 3D models and the possibility of performing augmented reality surgeries increase the surgeon’s confidence with the pathology, with potential benefits in precision and tailoring of the procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Autorino R, Porpiglia F, Dasgupta P et al (2017) Precision surgery and genitourinary cancers. Eur J Surg Oncol 43:893–908

    CAS  PubMed  Google Scholar 

  2. Porpiglia F, Bertolo R, Checcucci E et al (2018) Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists’ and patients’ perception. World J Urol 36(2):201–207

    PubMed  Google Scholar 

  3. Hyde ER, Berger LU, Ramachandran N, Hughes-Hallett A, Pavithran NP, Tran MGB, Ourselin S, Bex A, Mumtaz FH (2019) Interactive virtual 3D models of renal cancer patient anatomies alter partial nephrectomy surgical planning decisions and increase surgeon confidence compared to volume-rendered images. Int J Comput Assist Radiol Surg 14(4):723–732

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Porpiglia F, Fiori C, Checcucci E, Amparore D, Bertolo R (2018) Hyperaccuracy three-dimensional reconstruction is able to maximize the efficacy of selective clamping during robot-assisted partial nephrectomy for complex renal masses. Eur Urol 74:651–660

    PubMed  Google Scholar 

  5. Bertolo R, Autorino R, Fiori C, Amparore D, Checcucci E, Mottrie A, Porter J, Haber GP, Derweesh I, Porpiglia F (2019) Expanding the indications of robotic partial nephrectomy for highly complex renal tumors: urologists’ perception of the impact of hyperaccuracy three-dimensional reconstruction. J Laparoendosc Adv Surg Tech A 29(2):233–239

    PubMed  Google Scholar 

  6. Porpiglia F, Manfredi M, Checcucci E, Mele F, Bertolo R, De Luca S, Garrou D, Cattaneo G, Amparore D, Fiori C (2017) 66–3D prostate MRI reconstruction for cognitive robot assisted radical prostatectomy: Is it able to reduce the positive surgical margin rate? Eur Urol Suppl 16(3):e110

    Google Scholar 

  7. Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. Google Patents. https://patents.google.com/patent/US4575330A/en

  8. Ukimura O, Aron M, Nakamoto M, Shoji S, Abreu AL, Matsugasumi T et al (2014) Three dimensional surgical navigation model with TilePro display during robot assisted radical prostatectomy. J Endourol 28(6):625–630

    PubMed  Google Scholar 

  9. Schwalenberg T, Neuhaus J, Liatsikos E, Winkler M, Löffler S, Stolzenburg JU (2010) Neuroanatomy of the male pelvis in respect to radical prostatectomy including threedimensional visualization. BJU Int 105(1):21–27

    PubMed  Google Scholar 

  10. Chandak P, Byrne N, Lynch H, Allen C, Rottenberg G, Chandra A et al (2018) 3D printing in robot-assisted radical prostatectomy—an idea, development, exploration, assessment, longterm follow-up (IDEAL) Phase 2a study. BJU Int 122(3):360–361

    PubMed  Google Scholar 

  11. Shin T, Ukimura O, Gill IS (2016) Three-dimensional printed model of prostate anatomy and targeted biopsy-proven index tumor to facilitate nerve-sparing prostatectomy. Eur Urol 69(2):377–379

    PubMed  Google Scholar 

  12. Jomoto W, Tanooka M, Doi H et al (2018) Development of a three-dimensional surgical navigation system with magnetic resonance angiography and a three-dimensional printer for robot-assisted radical prostatectomy. Cureus 10(1):e2018

    PubMed  PubMed Central  Google Scholar 

  13. Silberstein JL, Maddox MM, Dorsey P, Feibus A, Thomas R, Lee BR (2014) Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study. Urology 84(2):268–272

    PubMed  Google Scholar 

  14. von Rundstedt FC, Scovell JM, Agrawal S, Zaneveld J, Link RE (2017) Utility of patient-specific silicone renal models for planning and rehearsal of complex tumour resections prior to robot-assisted laparoscopic partial nephrectomy. BJU Int 119(4):598–604

    Google Scholar 

  15. Wake N, Chandarana H, Huang WC, Taneja SS, Rosenkrantz AB (2016) Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology. Clin Radiol 71(6):610–614

    CAS  PubMed  Google Scholar 

  16. Wake N, Rude T, Kang SK et al (2017) 3D printed renal cancer models derived from MRI data: application in pre-surgical planning. Abdom Radiol 42(5):1501–1509

    Google Scholar 

  17. Maddox MM, Feibus A, Liu J, Wang J, Thomas R, Silberstein JL (2018) 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study. J Robot Surg 12(1):27–3. https://doi.org/10.1007/s11701-017-0680-6

    Article  PubMed  Google Scholar 

  18. URMC (2017) Creating the “model human” to practice surgery. https://www.urmcrochesteredu/news/story/creating-the-model-human-to-practicesurgeryaspx

  19. Tang SL, Kwoh CK, Teo MY et al (1998) Augmented reality systems for medical applications. IEEE Eng Med Biol Mag 17:49–58

    CAS  PubMed  Google Scholar 

  20. Ukimura O, Gill IS (2009) Augmented reality for computer-assisted image-guided minimally invasive urology. In: Ukimura O, Gill IS (eds) Contemporary interventional ultrasonography in urology. London, Springer, pp 179–184

    Google Scholar 

  21. Bernhardt S, Nicolau SA, Soler L, Doignon C (2017) The status of augmented reality in laparoscopic surgery as of 2016. Med Image Anal 37:66–90

    PubMed  Google Scholar 

  22. Cohen D, Mayer E, Chen D, Anstee A, Vale J, Yang GZ et al (2010) Augmented reality image guidance in minimally invasive prostatectomy. In: Madabhushi A, Dowling J, Yan P, Fenster A, Abolmaesumi P, Hata N (eds) Prostate cancer imaging. Computer-aided diagnosis, prognosis, and intervention. Prostate cancer imaging. Lecture Notes in Computer Science, vol 6367. Springer, Berlin, Heidelberg, pp 101–110

    Google Scholar 

  23. Thompson S, Penney G, Billia M, Challacombe B, Hawkes D, Dasgupta P (2013) Design and evaluation of an image-guidance system for robot-assisted radical prostatectomy. BJU Int 111(7):1081–1090

    PubMed  Google Scholar 

  24. Porpiglia F, Fiori C, Checcucci E, Amparore D, Bertolo R (2018) Augmented reality robot-assisted radical prostatectomy: preliminary experience. Urology. 115:184

    PubMed  Google Scholar 

  25. Porpiglia F, Checcucci E, Amparore D, Autorino R, Piana A, Bellin A, Piazzolla P, Massa F, Bollito E, Gned D, De Pascale A, Fiori C (2019) Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D™) technology: a radiological and pathological study. BJU Int 123(5):834–845

    PubMed  Google Scholar 

  26. Porpiglia F, Bertolo R, Amparore D, Checcucci E, Artibani W, Dasgupta P et al (2018) ESUT. Augmented reality during robot-assisted radical prostatectomy: expert robotic surgeons’ on-the-spot insights after live surgery. Minerva Urol Nefrol 70(2):226–229

    PubMed  Google Scholar 

  27. Porpiglia F, Checcucci E, Amparore D, Manfredi M, Massa F, Piazzolla P, Manfrin D, Piana A, Tota D, Bollito E, Fiori C (2019) Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol. https://doi.org/10.1016/j.eururo.2019.03.037

    Article  PubMed  Google Scholar 

  28. Su LM, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD (2009) Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 73(4):896–900

    PubMed  Google Scholar 

  29. Nosrati MS, Abugharbieh R, Peyrat JM, Abinahed J, Al-Alao O, Al-Ansari A, Hamarneh G (2016) Simultaneous multi-structure segmentation and 3D nonrigid pose estimation in image-guided robotic surgery. IEEE Trans Med Imaging 35(1):1–12

    PubMed  Google Scholar 

  30. Amir-Khalili A, Peyrat JM, Abinahed J, Al-Alao O, Al-Ansari A, Hamarneh G, Abugharbieh R (2014) Auto localization and segmentation of occluded vessels in robot-assisted partial nephrectomy. Med Image Comput Comput Assist Interv 17(Pt 1):407–414

    PubMed  Google Scholar 

  31. Wake N, Bjurlin MA, Rostami P, Chandarana H, Huang WC (2018) Three-dimensional printing and augmented reality: enhanced precision for robotic assisted partial nephrectomy. Urology. 116:227–228

    PubMed  Google Scholar 

  32. Singla R, Edgcumbe P, Pratt P, Nguan C, Rohling R (2017) Intra-operative ultrasound-based augmented reality guidance for laparoscopic surgery. Healthc Technol Lett 4(5):204–209

    PubMed  PubMed Central  Google Scholar 

  33. Antonelli A, Veccia A, Palumbo C, Peroni A, Mirabella G, Cozzoli A, Martucci P, Ferrari F, Simeone C, Artibani W (2018) Holographic reconstructions for preoperative planning before partial nephrectomy: a head-to-head comparison with standard CT scan. Urol Int 12:1–6. https://doi.org/10.1159/000495618

    Article  Google Scholar 

  34. Yoshida S, Sugimoto M, Fukuda S, Taniguchi N, Saito K, Fujii Y (2019) Mixed reality computed tomography-based surgical planning for partial nephrectomy using a head-mounted holographic computer. Int J Urol 26:681–682

    PubMed  Google Scholar 

  35. Momeni F, Mehdi M, Hassani NS, Liu X, Ni J (2017) A review of 4D printing. Mater Des 122:42–79

    CAS  Google Scholar 

  36. Skardal A, Mack D, Kapetanovic E et al (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1:792–802

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Ge HW, Li NC et al (2016) Evaluation of three-dimensional printing for laparoscopic partial nephrectomy of renal tumors: a preliminary report. World J Urol 34(4):533–537

    PubMed  Google Scholar 

  38. Hughes-Hallett A, Mayer EK, Marcus HJ et al (2014) Augmented reality partial nephrectomy: examining the current status and future perspectives. Urology 83:266–273

    PubMed  Google Scholar 

  39. Payan Y (2012) Soft tissue biomechanical modeling for computer assisted surgery. Springer, New York. https://doi.org/10.1007/978-3-642-29014-5

    Book  Google Scholar 

  40. Gonzalez D, Cueto E, Chinesta F (2016) Computational patient avatars for surgery planning. Ann Biomed Eng 44:35–45

    PubMed  Google Scholar 

  41. Porpiglia F, Amparore D, Checcucci E, Autorino R, Manfredi M, Iannizzi G, Fiori C, for ESUT Research Group (2018) Current use of three-dimensional model technology in urology: a road map for personalised surgical planning. Eur Urol Focus 4(5):652–656

    PubMed  Google Scholar 

  42. Porpiglia F, Fiori C, Checcucci E, Pecoraro A, Di Dio M, Bertolo R (2018) Selective clamping during laparoscopic partial nefrectomy: the use of near infrared fluorescence guidance. Minerva Urol Nefrol 70(3):326–332

    PubMed  Google Scholar 

  43. Lachkar AA, Soler L, Diana M, Becmeur F, Marescaux J (2019) 3D imaging and urology: why 3D reconstruction will be mandatory before performing surgery. Arch Esp Urol 72(3):347–352

    PubMed  Google Scholar 

  44. Bertolo R, Fiori C, Piramide F, Amparore D, Barrera M, Sardo D, Veltri A, Porpiglia F (2018) Assessment of the relationship between renal volume and renal function after minimally-invasive partial nephrectomy: the role of computed tomography and nuclear renal scan. Minerva Urol Nefrol 70(5):509–517

    PubMed  Google Scholar 

  45. Kratiras Z, Gavazzi A, Belba A, Willis B, Chew S, Allen C, Amoroso P, Dasgupta P (2019) Phase I study of a new tablet-based image guided surgical system in robot-assisted radical prostatectomy. Minerva Urol Nefrol 71(1):92–95

    PubMed  Google Scholar 

  46. Checcucci E, Amparore D, De Luca S, Autorino R, Fiori C, Porpiglia F (2019) Precision prostate cancer surgery: an overview of new technologies and techniques. Minerva Urol Nefrol. https://doi.org/10.23736/S0393-2249.19.03365-4

    Article  Google Scholar 

  47. Checcucci E, Amparore D, Pecoraro A, Peretti D, Aimar R, De Cillis S, Piramide F, Volpi G, Piazzolla P, Manfrin D, Manfredi M, Fiori C, Porpiglia F (2019) 3D mixed reality holograms for preoperative surgical planning of nephron-sparing surgery: evaluation of surgeons’ perception. Minerva Urol Nefrol

  48. Komai Y, Sugimoto M, Gotohda N et al (2016) Patient-specific 3-dimensional printed kidney designed for “4D” surgical navigation: a novel aid to facilitate minimally invasive off-clamp partial nephrectomy in complex tumor cases. Urology. 91:226–233

    PubMed  Google Scholar 

  49. Yoon R, del Junco M, Kaplan A et al (2015) Development of a novel iPad-based laparoscopic trainer and comparison with a standard laparoscopic trainer for basic laparoscopic skills testing. J Surg Educ 72(1):41–46

    PubMed  Google Scholar 

  50. Cacciamani GE, Okhunov Z, Meneses AD, Rodriguez-Socarras ME, Rivas JG, Porpiglia F, Liatsikos E, Veneziano D (2019) Impact of three-dimensional printing in urology: state of the art and future perspectives. A systematic review by ESUT-YAUWP Group. Eur Urol 76(2):209–221

    PubMed  Google Scholar 

  51. Wang Y, Gao X, Yang QS et al (2015) Three-dimensional printing technique assisted cognitive fusion in targeted prostate biopsy. Asian J Urol 2(4):214–219

    PubMed  PubMed Central  Google Scholar 

  52. Bernhard JC, Isotani S, Matsugasumi T et al (2016) Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol 34(3):337–345

    PubMed  Google Scholar 

  53. Souzaki R, Kinoshita Y, Ieiri S et al (2015) Preoperative surgical simulation of laparoscopic adrenalectomy for neuroblastoma using a three-dimensional printed model based on preoperative CT images. J Pediatr Surg 50(12):2112–2115

    PubMed  Google Scholar 

  54. Simpfendörfer T, Baumhauer M, Müller M, Gutt CN, Meinzer HP, Rassweiler JJ, Guven S, Teber D (2011) Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol 25(12):1841–1845

    PubMed  Google Scholar 

  55. Haouchine N, Dequidt J, Berger MO, Cotin S (2013) Deformation-based augmented reality for hepatic surgery. Stud Health Technol Inf 184:182–188

    Google Scholar 

  56. Feußner H, Park A (2017) Surgery 4.0: the natural culmination of the industrial revolution? Innov Surg Sci 2(3):105–108

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Protocol/project development: FP, RA, CF. Data collection or management: F. Piramide, G. Niculescu, P. Piazzolla, MM. Data analysis: GEC, MDD, IM, EC, GC. Manuscript writing/editing: EC, DA.

Corresponding author

Correspondence to Francesco Porpiglia.

Ethics declarations

Conflict of interest

All the authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Checcucci, E., Amparore, D., Fiori, C. et al. 3D imaging applications for robotic urologic surgery: an ESUT YAUWP review. World J Urol 38, 869–881 (2020). https://doi.org/10.1007/s00345-019-02922-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-019-02922-4

Keywords

Navigation