Skip to main content
Log in

The safety of urologic robotic surgery depends on the skills of the surgeon

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

To assess the available literature evidence that discusses the effect of surgical experience on patient outcomes in robotic setting. This information is used to help understand how we can develop a learning process that allows surgeons to maximally accommodate patient safety.

Methods

A literature search of the MEDLINE/PubMed and Scopus database was performed. Original and review articles published in the English language were included after an interactive peer-review process of the panel.

Results

Robotic surgical procedures require high level of experience to guarantee patient safety. This means that, for some procedures, the learning process might be longer than originally expected. In this context, structured training programs that assist surgeons to improve outcomes during their learning processes were extensively discussed. We identified few structured robotic curricula and demonstrated that for some procedures, curriculum trained surgeons can achieve outcomes rates during their initial learning phases that are at least comparable to those of experienced surgeons from high-volume centres. Finally, the importance of non-technical skills on patient safety and of their inclusion in robotic training programs was also assessed.

Conclusion

To guarantee safe robotic surgery and to optimize patient outcomes during the learning process, standardized and validated training programs are instrumental. To date, only few structured validated curricula exist for standardized training and further efforts are needed in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makary MA, Daniel M (2016) Medical error-the third leading cause of death in the US. BMJ 353:1–5. https://doi.org/10.1136/bmj.i2139

    Article  Google Scholar 

  2. Kohn LT, Corrigan JM, Donaldson MS (eds) (2000) To err is human: building a safer health system. Institute of Medicine (US) Committee on Quality of Health Care in America. National Academies Press (US), Washington, DC

  3. World Health Organization (2009) WHO guidelines for safe surgery: safe surgery saves lives

  4. Mazzone E, Mistretta FA, Knipper S, Tian Z, Larcher A, Widmer H et al (2019) Contemporary North-American assessment of robot-assisted surgery rates and total hospital charges for major surgical uro-oncological procedures. J Endourol 33(6):438–447

    Article  PubMed  Google Scholar 

  5. Sridhar AN, Briggs TP, Kelly JD, Nathan S (2017) Training in robotic surgery—an overview. Curr Urol Rep 18(8):58

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schreuder HWR, Wolswijk R, Zweemer RP, Schijven MP, Verheijen RHM (2012) Training and learning robotic surgery, time for a more structured approach: a systematic review. BJOG 119(2):137–149

    Article  CAS  PubMed  Google Scholar 

  7. Brook NR, Dell’Oglio P, Barod R, Collins J, Mottrie A (2018) Comprehensive training in robotic surgery. Curr Opin Urol 29(1):1–9

    Article  Google Scholar 

  8. Ahmed K, Khan R, Mottrie A, Lovegrove C, Abaza R, Ahlawat R et al (2015) Development of a standardised training curriculum for robotic surgery: a consensus statement from an international multidisciplinary group of experts. BJU Int 116(1):93–101

    Article  PubMed  Google Scholar 

  9. Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KM, Arain NA, Tesfay ST et al (2012) Developing a comprehensive, proficiency-based training program for robotic surgery. Surgery 152(3):477–488 

    Article  PubMed  Google Scholar 

  10. Collins JW, Levy J, Stefanidis D, Gallagher A, Coleman M, Cecil T et al (2019) Utilising the delphi process to develop a proficiency-based progression train-the-trainer course for robotic surgery training. Eur Urol. https://doi.org/10.1016/j.eururo.2018.12.044

    Article  PubMed  Google Scholar 

  11. Fiorini P, Grespan L. SAFROS project: patient safety in robotic surgery. Seventh framework programme research project (FP7-ICT-2009.5.2). University of Verona

  12. Vickers A, Savage C, Bianco F, Mulhall J, Sandhu J, Guillonneau B et al (2011) Cancer control and functional outcomes after radical prostatectomy as markers of surgical quality: analysis of heterogeneity between surgeons at a single cancer center. Eur Urol 59(3):317–322. https://doi.org/10.1016/j.eururo.2010.10.045

    Article  PubMed  Google Scholar 

  13. Thompson JE, Egger S, Böhm M, Siriwardana AR, Haynes A-M, Matthews J et al (2017) Superior biochemical recurrence and long-term quality-of-life outcomes are achievable with robotic radical prostatectomy after a long learning curve - updated analysis of a prospective single-surgeon cohort of 2206 consecutive cases. Eur Urol 73(5):664–671. https://doi.org/10.1016/j.eururo.2017.11.035

    Article  PubMed  Google Scholar 

  14. Collins JW, Tyritzis S, Nyberg T, Schumacher MC, Laurin O, Adding C et al (2014) Robot-assisted radical cystectomy (RARC) with intracorporeal neobladder—what is the effect of the learning curve on outcomes? BJU Int 113(1):100–107

    Article  PubMed  Google Scholar 

  15. Larcher A, Muttin F, Peyronnet B, De Naeyer G, Khene ZE, Dell’Oglio P et al (2018) The learning curve for robot-assisted partial nephrectomy: impact of surgical experience on perioperative outcomes. Eur Urol. https://doi.org/10.1016/j.eururo.2018.08.042

    Article  PubMed  Google Scholar 

  16. Vickers AJ, Bianco FJ, Serio AM, Eastham JA, Schrag D, Klein EA et al (2007) The surgical learning curve for prostate cancer control after radical prostatectomy. J Natl Cancer Inst 99(15):1171–1177

    Article  PubMed  Google Scholar 

  17. Cook JA, Ramsay CR, Fayers P (2007) Using the literature to quantify the learning curve: a case study. Int J Technol Assess Health Care 23(2):255–260

    Article  PubMed  Google Scholar 

  18. Subramonian K, Muir G (2004) The “learning curve” in surgery: what is it, how do we measure it and can we influence it? BJU Int 93(9):1173–1174

    Article  CAS  PubMed  Google Scholar 

  19. Abboudi H, Khan MS, Guru KA, Froghi S, De Win G, Van Poppel H et al (2014) Learning curves for urological procedures: a systematic review. BJU Int 114(4):617–629

    Article  PubMed  Google Scholar 

  20. Di Pierro GB, Wirth JG, Ferrari M, Danuser H, Mattei A (2014) Impact of a single-surgeon learning curve on complications, positioning injuries, and renal function in patients undergoing robot-assisted radical prostatectomy and extended pelvic lymph node dissection. Urology 84(5):1106–1111

    Article  PubMed  Google Scholar 

  21. Monnerat Lott F, Siqueira D, Argolo H, Lindberg Nobrega B, Campos FS, Favorito LA (2018) Analysis of the learning curve of surgeons without previous experience in laparoscopy to perform robot-assisted radical prostatectomy. Adv Urol 2018:9073807

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ou Y-C, Yang C-R, Wang J, Yang C-K, Cheng C-L, Patel VR et al (2011) The learning curve for reducing complications of robotic-assisted laparoscopic radical prostatectomy by a single surgeon. BJU Int 108(3):420–425. https://doi.org/10.1111/j.1464-410X.2010.09847.x

    Article  PubMed  Google Scholar 

  23. O’Malley PJ, Van Appledorn S, Bouchier-Hayes DM, Crowe H, Costello AJ (2006) Robotic radical prostatectomy in Australia: initial experience. World J Urol 24(2):165–170

    Article  PubMed  Google Scholar 

  24. Sharma NL, Papadopoulos A, Lee D, Mcloughlin J, Vowler SL, Baumert H et al (2010) First 500 cases of robotic-assisted laparoscopic radical prostatectomy from a single UK centre: learning curves of two surgeons. BJU Int 108(5):739–747

    PubMed  Google Scholar 

  25. Giberti C, Schenone M, Gallo F, Cortese P, Ninotta G (2011) 343 Robot assisted laparoscopic prostatectomy (ralp): the “real” learning curve. Eur Urol Suppl 10(2):125. http://www.sciencedirect.com/science/article/pii/S1569905611603394

    Article  Google Scholar 

  26. Gumus E, Boylu U, Turan T, Onol FF (2011) The learning curve of robot-assisted radical prostatectomy. J Endourol 25(10):1633–1637. https://doi.org/10.1089/end.2011.0071

    Article  PubMed  Google Scholar 

  27. Hayn MH, Hussain A, Mansour AM, Andrews PE, Carpentier P, Castle E et al (2010) The learning curve of robot-assisted radical cystectomy: results from the international robotic cystectomy consortium. Eur Urol 58(2):197–202. https://doi.org/10.1016/j.eururo.2010.04.024

    Article  PubMed  Google Scholar 

  28. Sivaraman A, Sanchez-Salas R, Prapotnich D, Yu K, Olivier F, Secin FP et al (2017) Learning curve of minimally invasive radical prostatectomy: comprehensive evaluation and cumulative summation analysis of oncological outcomes. Urol Oncol 35(4):149.e1–149.e6

    Article  Google Scholar 

  29. Ou YC, Yang CR, Wang J, Yang CK, Cheng CL, Patel VR et al (2011) The learning curve for reducing complications of robotic-assisted laparoscopic radical prostatectomy by a single surgeon. BJU Int 108(3):420–425

    Article  PubMed  Google Scholar 

  30. Vickers AJ, Maschino A, Savage CJ, Cronin AM (2012) Assessing the learning curve for prostate cancer surgery BT. In: Patel VR (ed) Robotic urologic surgery. Springer, London, pp 49–60. https://doi.org/10.1007/978-1-84882-800-1_6

    Chapter  Google Scholar 

  31. Vickers AJ, Savage CJ, Hruza M, Tuerk I, Koenig P, Martínez-Piñeiro L et al (2009) The surgical learning curve for laparoscopic radical prostatectomy: a retrospective cohort study. Lancet Oncol 10(5):475–480

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bravi CA, Tin A, Vertosick E, Mazzone E, Martini A, Dell’Oglio P et al (2019) The impact of experience on the risk of surgical margins and biochemical recurrence after robot-assisted radical prostatectomy: a learning-curve study. J Urol 202(1):108–113

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thompson JE, Egger S, Böhm M, Haynes A-M, Matthews J, Rasiah K et al (2014) Superior quality of life and improved surgical margins are achievable with robotic radical prostatectomy after a long learning curve: a prospective single-surgeon study of 1552 consecutive cases. Eur Urol 65(3):521–531. https://doi.org/10.1016/j.eururo.2013.10.030

    Article  PubMed  Google Scholar 

  34. Leroy TJ, Thiel DD, Duchene DA, Parker AS, Igel TC, Wehle MJ et al (2010) Safety and peri-operative outcomes during learning curve of robot-assisted laparoscopic prostatectomy: a multi-institutional study of fellowship-trained robotic surgeons versus experienced open radical prostatectomy surgeons incorporating robot-assisted L. J Endourol 24(10):1665–1669

    Article  PubMed  Google Scholar 

  35. Mottrie A, De Naeyer G, Schatteman P, Carpentier P, Sangalli M, Ficarra V (2010) Impact of the learning curve on perioperative outcomes in patients who underwent robotic partial nephrectomy for parenchymal renal tumours. Eur Urol 58(1):127–132

    Article  PubMed  Google Scholar 

  36. Dias BH, Ali MS, Dubey S, Krishnaswamy SA, Rao AR, Dubey D (2018) Impact of learning curve on the perioperative outcomes following robot-assisted partial nephrectomy for renal tumors. Indian J Urol 34(1):62–67

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xie Y, Ma X, Gu L, Li H, Lv X, Gao Y et al (2016) Associating the learning curve and tumor anatomical complexity with the margins, ischemia, and complications rate after robot-assisted partial nephrectomy. Int J Surg 36(Pt A):219–224

    Article  PubMed  Google Scholar 

  38. Hanzly M, Frederick A, Creighton T, Atwood K, Mehedint D, Kauffman EC et al (2015) Learning curves for robot-assisted and laparoscopic partial nephrectomy. J Endourol 29(3):297–303

    Article  PubMed  Google Scholar 

  39. Larcher A, Muttin F, Peyronnet B, De Naeyer G, Khene Z, Dell P et al (2018) The learning curve for robot-assisted partial nephrectomy: impact of surgical experience on perioperative outcomes. Eur Urol 75(2):253–256

    Article  PubMed  Google Scholar 

  40. Paulucci DJ, Abaza R, Eun DD, Hemal AK, Badani KK (2017) Robot-assisted partial nephrectomy: continued refinement of outcomes beyond the initial learning curve. BJU Int 119(5):748–754

    Article  PubMed  Google Scholar 

  41. Richards KA, Kader K, Pettus JA, Smith JJ, Hemal AK (2011) Does initial learning curve compromise outcomes for robot-assisted radical cystectomy? A critical evaluation of the first 60 cases while establishing a robotics program. J Endourol 25(9):1553–1558

    Article  PubMed  Google Scholar 

  42. Mottrie A, Novara G (2014) Is surgery a never-ending learning process? BJU Int 114(4):472–473

    Article  PubMed  Google Scholar 

  43. Volpe A, Ahmed K, Dasgupta P, Ficarra V, Novara G, Van Der Poel H et al (2015) Pilot validation study of the european association of urology robotic training curriculum. Eur Urol 68(2):292–299. https://doi.org/10.1016/j.eururo.2014.10.025

    Article  PubMed  Google Scholar 

  44. Mottrie A, Novara G, van der Poel H, Dasgupta P, Montorsi F, Gandaglia G (2016) The european association of urology robotic training curriculum: an update. Eur Urol Focus 2(1):105–108

    Article  PubMed  Google Scholar 

  45. Jayakumar N, Brunckhorst O, Dasgupta P, Khan MS, Ahmed K (2015) e-Learning in surgical education: a systematic review. J Surg Educ 72(6):1145–1157

    Article  PubMed  Google Scholar 

  46. https://www.intuitive.com/. Accessed 2015

  47. Kumar A, Smith R, Patel VR (2015) Current status of robotic simulators in acquisition of robotic surgical skills. Curr Opin Urol 25(2):168–174

    Article  PubMed  Google Scholar 

  48. Moglia A, Ferrari V, Morelli L, Ferrari M, Mosca F, Cuschieri A (2016) A systematic review of virtual reality simulators for robot-assisted surgery. Eur Urol 69(6):1065–1080

    Article  PubMed  Google Scholar 

  49. Larcher A, Turri F, Bianchi L, Dell’Oglio P, Collins J, Capitanio U et al (2019) Virtual reality validation of the erus simulation-based training programmes: results from a high-volume training centre for robot-assisted surgery. Eur Urol. https://doi.org/10.1016/j.eururo.2019.02.008

    Article  PubMed  Google Scholar 

  50. Gallagher A (2012) Metric-based simulation training to proficiency in medical education: what it is and how to do it. Ulster Med J 81(3):107–113

    PubMed  PubMed Central  Google Scholar 

  51. Gallagher A (2018) Proficiency-based progression simulation training for more than an interesting educational experience. J Musculoskelet Surg Res 2(4):139

    Article  Google Scholar 

  52. Goh AC, Goldfarb DW, Sander JC, Miles BJ, Dunkin BJ (2012) Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol 187(1):247–252

    Article  PubMed  Google Scholar 

  53. Mazzone E, Dell’Oglio P, Mottrie A (2019) Outcome report of the first ERUS robotic urology curriculum-trained surgeon in Turkey: the importance of structured and validated training programs for global outcome improvement. Turk J Urol. https://doi.org/10.5152/tud.2019.19019

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schiavina R, Borghesi M, Dababneh H, Rossi MS, Pultrone CV, Vagnoni V et al (2018) The impact of a structured intensive modular training in the learning curve of robot assisted radical prostatectomy. Arch Ital di Urol Androl 90(1):1–7

    Article  Google Scholar 

  55. Bedir F, Kocaturk H, Canda AE, Atmaca AF, Demirdogen SO, Keske M et al (2019) Robotic radical prostatectomy in 93 cases: outcomes of the first ERUS robotic urology curriculum trained surgeon in Turkey. Turk J Urol 45:183

    Article  PubMed  PubMed Central  Google Scholar 

  56. Larcher A, De Naeyer G, Turri F, Dell’Oglio P, Capitanio U, Collins J et al (2019) The ERUS curriculum for robot-assisted partial nephrectomy: structure definition and pilot clinical validation. Eur Urol 75:1023–1031

    Article  PubMed  Google Scholar 

  57. Dell’Oglio P, Turri F, Larcher A, D’Hondt F, Sanchez-Salas R, Bochner B et al (2019) Definition of a structured training curriculum for robot-assisted radical cystectomy: a delphi-consensus study led by the ERUS educational board. Eur Urol Suppl 18(1):e1116–e1119. https://doi.org/10.1016/S1569-9056(19)30808-5

    Article  Google Scholar 

  58. BAUS. Robotic surgery curriculum—guidelines for training. https://www.baus.org.uk/professionals/baus_business/publications/83/robotic_surgery_curriculum/

  59. Stegemann AP, Ahmed K, Syed JR, Rehman S, Ghani K, Autorino R et al (2013) Fundamental skills of robotic surgery: a multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology 81(4):767–774

    Article  PubMed  Google Scholar 

  60. Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KM, Arain NA, Tesfay ST et al (2012) Proficiency-based training for robotic surgery: construct validity, workload, and expert levels for nine inanimate exercises. Surg Endosc 26(6):1516–1521. https://doi.org/10.1007/s00464-011-2102-6

    Article  PubMed  Google Scholar 

  61. Foell K, Finelli A, Yasufuku K, Bernardini MQ, Waddell TK, Pace KT et al (2013) Robotic surgery basic skills training: evaluation of a pilot multidisciplinary simulation-based curriculum. Can Urol Assoc J 7(11–12):430–434. https://www.ncbi.nlm.nih.gov/pubmed/24381662

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fellowship of international college of robotic surgeons. http://icrsonline.org/fellowship.html

  63. Attalla K, Raza S, Rehman S, Din R, Stegemann A, Perusich E et al (2013) Effectiveness of a dedicated robot-assisted surgery training program. Canadian J Urol 20:7084–7090

    Google Scholar 

  64. Macgregor JM, Kim RS, Gallagher JT, Soliman MK, Ferrara A, Baldwin K et al (2012) Fundamentals of robotic surgery. Soc Am Gastrointest Endosc Surg Annu Meet. Poster P151

  65. Lyons C, Goldfarb D, Jones SL, Badhiwala N, Miles B, Link R et al (2013) Which skills really matter? proving face, content, and construct validity for a commercial robotic simulator. Surg Endosc 27(6):2020–2030

    Article  PubMed  Google Scholar 

  66. Smith R, Patel V, Satava R (2014) Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int J Med Robot 10(3):379–384

    Article  PubMed  Google Scholar 

  67. Cecilio-Fernandes D, Cnossen F, Jaarsma DADC, Tio RA (2018) Avoiding surgical skill decay: a systematic review on the spacing of training sessions. J Surg Educ 75(2):471–480

    Article  PubMed  Google Scholar 

  68. Satava RM, Stefanidis D, Levy JS, Smith R, Martin JR, Monfared S et al (2019) Proving the effectiveness of the fundamentals of robotic surgery (FRS) skills curriculum: a single-blinded, multispecialty, multi-institutional randomized control trial. Ann Surg. https://doi.org/10.1097/SLA.0000000000003220

    Article  Google Scholar 

  69. Goldenberg MG, Goldenberg L, Grantcharov TP (2017) Surgeon performance predicts early continence after robot-assisted radical prostatectomy. J Endourol 31(9):858–863

    Article  PubMed  Google Scholar 

  70. Angelo RL, Ryu RKN, Pedowitz RA, Beach W, Burns J, Dodds J et al (2015) A proficiency-based progression training curriculum coupled with a model simulator results in the acquisition of a superior arthroscopic Bankart skill set. Arthroscopy 31(10):1854–1871. https://doi.org/10.1016/j.arthro.2015.07.001

    Article  PubMed  Google Scholar 

  71. Cates CU, Lönn L, Gallagher AG (2016) Prospective, randomised and blinded comparison of proficiency-based progression full-physics virtual reality simulator training versus invasive vascular experience for learning carotid artery angiography by very experienced operators. BMJ Simul Technol Enhanc Learn 2(1):1–5. http://stel.bmj.com/content/2/1/1.abstract

    Article  Google Scholar 

  72. Gallagher AG, Seymour NE, Jordan-Black J-A, Bunting BP, McGlade K, Satava RM (2013) Prospective, randomized assessment of transfer of training (ToT) and transfer effectiveness ratio (TER) of virtual reality simulation training for laparoscopic skill acquisition. Ann Surg 257(6):1025–1031

    Article  PubMed  Google Scholar 

  73. Van Sickle KR, Ritter EM, Baghai M, Goldenberg AE, Huang I-P, Gallagher AG et al (2008) Prospective, randomized, double-blind trial of curriculum-based training for intracorporeal suturing and knot tying. J Am Coll Surg 207(4):560–568

    Article  PubMed  Google Scholar 

  74. De Win G, Van Bruwaene S, Kulkarni J, Van Calster B, Aggarwal R, Allen C et al (2016) An evidence-based laparoscopic simulation curriculum shortens the clinical learning curve and reduces surgical adverse events. Adv Med Educ Pract 7:357–370

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hung AJ, Chen J, Ghodoussipour S, Oh PJ, Liu Z, Nguyen J et al (2019) A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy. BJU Int. https://doi.org/10.1111/bju.14735

    Article  PubMed  PubMed Central  Google Scholar 

  76. Collins JW, Dell’Oglio P, Hung AJ, Brook NR (2018) The Importance of Technical and Non-technical Skills in Robotic Surgery Training. Eur Urol Focus 4(5):674–676. https://doi.org/10.1016/j.euf.2018.08.018

    Article  PubMed  Google Scholar 

  77. van der Poel H, Brinkman W, van Cleynenbreugel B, Kallidonis P, Stolzenburg J-U, Liatsikos E et al (2016) Training in minimally invasive surgery in urology: European Association of Urology/International Consultation of Urological Diseases consultation. BJU Int 117(3):515–530

    Article  PubMed  Google Scholar 

  78. Yule J, Hill K, Yule S (2018) Development and evaluation of a patient-centred measurement tool for surgeons’ non-technical skills. BJS 105(7):876–884

    Article  CAS  Google Scholar 

  79. Undre S, Healey AN, Darzi A, Vincent CA (2006) Observational assessment of surgical teamwork: a feasibility study. World J Surg 30(10):1774–1783

    Article  PubMed  Google Scholar 

  80. Raison N, Wood T, Brunckhorst O, Abe T, Ross T, Challacombe B et al (2017) Development and validation of a tool for non-technical skills evaluation in robotic surgery—the ICARS system. Surg Endosc 31(12):5403–5410. https://doi.org/10.1007/s00464-017-5622-x

    Article  PubMed  Google Scholar 

  81. Leonard M, Graham S, Bonacum D (2004) The human factor: the critical importance of effective teamwork and communication in providing safe care. Qual Saf Health Care 13(Suppl 1):i85–i90. https://www.ncbi.nlm.nih.gov/pubmed/15465961

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nance JJ (2008) Why hospitals should fly: the ultimate flight plan to patient safety and quality care. Second River Healthcare Press, Bozeman, Montana

    Google Scholar 

  83. Brewin J, Ahmed K, Challacombe B (2014) An update and review of simulation in urological training. Int J Surg 12(2):103–108

    Article  PubMed  Google Scholar 

  84. Brunckhorst O, Volpe A, Van Der Poel H, Mottrie A, Ahmed K, Catto J (2016) Training, simulation, the learning curve, and how to reduce complications in urology. Eur Urol Focus 2(1):10–18 

    Article  PubMed  Google Scholar 

  85. Chen J, Cheng N, Cacciamani G, Oh P, Lin-Brande M, Remulla D et al (2019) Objective assessment of robotic surgical technical skill: a systematic review. J Urol 201(3):461–469

    Article  PubMed  Google Scholar 

  86. Mazzocco K, Petitti DB, Fong KT, Bonacum D, Brookey J, Graham S et al (2009) Surgical team behaviors and patient outcomes. Am J Surg 197(5):678–685

    Article  PubMed  Google Scholar 

  87. Collins JW, Dell’Oglio P, Hung AJ, Brook NR (2018) The importance of technical and non-technical skills in robotic surgery training. Eur Urol Focus 4(5):674–676

    Article  PubMed  Google Scholar 

  88. Flin R, Yule S, Paterson-Brown S, Maran N, Rowley D, Youngson G (2007) Teaching surgeons about non-technical skills. Surgeon 5(2):86–89

    Article  CAS  PubMed  Google Scholar 

  89. Dasgupta P, Ahmed K, Jaye P, Khan M (2014) Surgical simulation. Anthem Press, London

    Google Scholar 

  90. Fanning RM, Gaba DM (2007) The role of debriefing in simulation-based learning. Simul Healthc 2(2):115–125

    Article  PubMed  Google Scholar 

  91. Undre S, Koutantji M, Sevdalis N, Gautama S, Selvapatt N, Williams S et al (2007) Multidisciplinary crisis simulations: the way forward for training surgical teams. World J Surg 31(9):1843–1853

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Dell’Oglio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palagonia, E., Mazzone, E., De Naeyer, G. et al. The safety of urologic robotic surgery depends on the skills of the surgeon. World J Urol 38, 1373–1383 (2020). https://doi.org/10.1007/s00345-019-02901-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-019-02901-9

Keywords

Navigation