Advertisement

Absolute basophil count is associated with time to recurrence in patients with high-grade T1 bladder cancer receiving bacillus Calmette–Guérin after transurethral resection of the bladder tumor

  • M. FerroEmail author
  • G. Di Lorenzo
  • M. D. Vartolomei
  • D. Bruzzese
  • F. Cantiello
  • G. Lucarelli
  • G. Musi
  • S. Di Stasi
  • R. Hurle
  • G. Guazzoni
  • G. M. Busetto
  • A. Gabriele
  • F. Del Giudice
  • R. Damiano
  • F. Perri
  • S. Perdona
  • P. Verze
  • M. Borghesi
  • R. Schiavina
  • G. L. Almeida
  • P. Bove
  • E. Lima
  • R. Autorino
  • N. Crisan
  • A. R. Abu Farhan
  • M. Battaglia
  • G. I. Russo
  • Vincenzo Ieluzzi
  • G. Morgia
  • P. De Placido
  • D. Terracciano
  • A. Cimmino
  • L. Scafuri
  • V. Mirone
  • O. De Cobelli
  • S. Shariat
  • Guru Sonpavde
  • C. Buonerba
Original Article

Abstract

Background

Basophils, eosinophils and monocytes may be involved in BCG-induced immune responses and be associated with outcomes of bladder cancer patients receiving intravesical BCG. Our objective was to explore the association of baseline counts of basophils, eosinophils and monocytes with outcomes of patients with high-grade T1 bladder cancer receiving a standard course of intravesical BCG.

Methods

We retrospectively reviewed medical records of patients with primary T1 HG/G3 bladder cancer. After re-TURBT, patients were treated with a 6-week course of intravesical BCG induction followed by intravesical BCG every week for 3 weeks given at 3, 6, 12, 18, 24, 30 and 36 months from initiation of therapy The analysis of potential risk factors for recurrence, muscle invasion and cancer-specific and overall survival was performed using univariable Cox regression models. Those factors that presented, at univariate analysis, an association with the event at a liberal p < 0.1, have been selected for the development of a multivariable model.

Results

A total of 1045 patients with primary T1 HG/G3 were included. A total of 678 (64.9%) recurrences, 303 (29.0%) progressions and 150 (14.3%) deaths were observed during follow-up. Multivariate analysis showed that logarithmic transformation of basophils count was associated with a 30% increment in the hazard of recurrence per unit increase of logarithmic basophils count (HR 1.30; 95% confidence interval 1.09–1.54; p = 0.0026). Basophil count modeled by quartiles was also significantly associated with time to recurrence [second vs. lower quartile HR 1.42 (1.12–1.79); p = 0.003, third vs. lower quartile HR 1.26 (1.01–1.57); p = 0.041; upper vs. lower quartile HR 1.36 (1.1–1.68); p = 0.005]. The limitations of a retrospective study are applicable.

Conclusion

Baseline basophil count may predict recurrence in BCG-treated HG/G3 T1 bladder cancer patients. External validation is warranted.

Keywords

Bladder cancer Basophils BCG 

Notes

Author contributions

MF: project development; data management; data analysis. GDL: project development; data management; data analysis. MDV: project development; manuscript editing. DB: data analysis. FC: Data collection. GL: Project development; manuscript editing. GM: project development; manuscript editing. SDS: project development; manuscript editing. RH: project development; manuscript editing. GG: project development; manuscript editing. GMB: project development; manuscript editing. AG: data management and collection. FDG: data management and collection. RD: data management and collection. FP: project development; manuscript editing. SP: project development; manuscript editing. PV: data management and collection. MB: data management and collection. RS: project development; manuscript editing. GLA: data management and collection. PB: data management and collection. EL: data management and collection. RA: project development; manuscript editing. NC: data management and collection. ARAF: data management and collection. MB: project development; manuscript editing. GIR: data management and collection. VI: project development; manuscript editing. GM: project development; manuscript editing. PDP: project development; manuscript editing. DT: project development; manuscript editing. AC: project development; manuscript editing. LS: project development; manuscript editing. VM: project development; manuscript editing. OdC: project development; manuscript editing. SS: project development; manuscript editing. GS: project development; manuscript editing. CB: conception of the original research hypothesis; project development; data management; data analysis: manuscript writing.

Compliance with ethical standards

Conflict of interest

The authors declare they have no potential conflicts of interest to disclose.

Ethical approval

This was a retrospective study involving Human Participants treated according to standard clinical practice. All permissions granted by competent Ethics Committees and other authorities were obtained and all informed consents required by the existing law and regulations were collected.

References

  1. 1.
    FernándezMI et al (2018) Epidemiology, prevention, screening, diagnosis, and evaluation: update of the ICUD–SIU joint consultation on bladder cancer. World J Urol 37(1):3–13.  https://doi.org/10.1007/s00345-018-2436-y CrossRefGoogle Scholar
  2. 2.
    Chavan S, Bray F, Lortet-Tieulent J, Goodman M, Jemal A (2014) International variations in bladder cancer incidence and mortality. Eur Urol 66(1):59–73CrossRefGoogle Scholar
  3. 3.
    Di Lorenzo G, Federico P, De Placido S, Buonerba C (2015) Increased risk of bladder cancer in critical areas at high pressure of pollution of the Campania region in Italy: a systematic review. Crit Rev Oncol Hematol 96(3):534–541CrossRefGoogle Scholar
  4. 4.
    Cambier S et al (2016) EORTC nomograms and risk groups for predicting recurrence, progression, and disease-specific and overall survival in non-muscle-invasive stage Ta-T1 urothelial bladder cancer patients treated with 1–3 years of maintenance bacillus Calmette–Guérin. Eur Urol 69(1):60–69CrossRefGoogle Scholar
  5. 5.
    Pettenati C, Ingersoll MA (2018) Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat Rev Urol 15(10):615–625.  https://doi.org/10.1038/s41585-018-0055-4 CrossRefGoogle Scholar
  6. 6.
    Vartolomei MD et al (2018) Validation of neutrophil-to-lymphocyte ratio in a multi-institutional cohort of patients with T1G3 non-muscle-invasive bladder cancer. Clin Genitourin Cancer 16(6):445–452.  https://doi.org/10.1016/j.clgc.2018.07.003 CrossRefGoogle Scholar
  7. 7.
    Kluth LA et al (2013) Obesity is associated with worse outcomes in patients with T1 high grade urothelial carcinoma of the bladder. J Urol 190(2):480–486CrossRefGoogle Scholar
  8. 8.
    Bolenz C et al (2010) Lymphovascular invasion is an independent predictor of oncological outcomes in patients with lymph node-negative urothelial bladder cancer treated by radical cystectomy: a multicentre validation trial. BJU Int 106(4):493–499CrossRefGoogle Scholar
  9. 9.
    Vartolomei MD et al (2018) Prognostic role of pretreatment neutrophil-to-lymphocyte ratio (NLR) in patients with non-muscle-invasive bladder cancer (NMIBC): a systematic review and meta-analysis. Urol Oncol Semin Orig Investig 36(9):389–399CrossRefGoogle Scholar
  10. 10.
    Schemper M, Wakounig S, Heinze G (2009) The estimation of average hazard ratios by weighted Cox regression. Stat Med 28(19):2473–2489CrossRefGoogle Scholar
  11. 11.
    Lucey DR, Clerici M, Shearer GM (1996) Type 1, and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 9(4):532–562CrossRefGoogle Scholar
  12. 12.
    Thanhäuser A et al (1995) The induction of bacillus-Calmette–Guérin-activated killer cells requires the presence of monocytes and T-helper type-1 cells. Cancer Immunol Immunother 40(2):103–108CrossRefGoogle Scholar
  13. 13.
    Saint F et al (2002) Prognostic value of a T helper 1 urinary cytokine response after intravesical bacillus Calmette–Guerin treatment for superficial bladder cancer. J Urol 167(1):364–367CrossRefGoogle Scholar
  14. 14.
    Luo Y, Chen X, O’Donnell MA (2003) Role of Th1 and Th2 cytokines in BCG-induced IFN-γ production: cytokine promotion and simulation of BCG effect. Cytokine 21(1):17–26CrossRefGoogle Scholar
  15. 15.
    Riemensberger J, Böhle A, Brandau S (2002) IFN-gamma and IL-12 but not IL-10 are required for local tumour surveillance in a syngeneic model of orthotopic bladder cancer. Clin Exp Immunol 127(1):20–26CrossRefGoogle Scholar
  16. 16.
    Saint F et al (2003) Urinary IL-2 assay for monitoring intravesical bacillus Calmette–Guérin response of superficial bladder cancer during induction course and maintenance therapy. Int J Cancer 107(3):434–440CrossRefGoogle Scholar
  17. 17.
    Voehringer D (2017) Recent advances in understanding basophil functions in vivo. F1000Research 6:1464CrossRefGoogle Scholar
  18. 18.
    Otsuka A, Kabashima K (2015) Contribution of basophils to cutaneous immune reactions and Th2-mediated allergic responses. Front Immunol 6:393.  https://doi.org/10.3389/fimmu.2015.00393 CrossRefGoogle Scholar
  19. 19.
    Tang H et al (2010) The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 11(7):608–617CrossRefGoogle Scholar
  20. 20.
    Karasuyama H, Mukai K, Obata K, Tsujimura Y, Wada T (2011) Nonredundant roles of basophils in immunity. Annu Rev Immunol 29(1):45–69CrossRefGoogle Scholar
  21. 21.
    De Monte L et al (2016) Basophil recruitment into tumor-draining lymph nodes correlates with Th2 inflammation and reduced survival in pancreatic cancer patients. Cancer Res 76(7):1792–1803CrossRefGoogle Scholar
  22. 22.
    De Monte L et al (2011) Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med 208(3):469–478CrossRefGoogle Scholar
  23. 23.
    Mitre E, Nutman TB (2006) Basophils, basophilia and helminth infections. Chem Immunol Allergy 90:141–156Google Scholar
  24. 24.
    Hart TK et al (2002) Preclinical efficacy and safety of pascolizumab (SB 240683): a humanized anti-interleukin-4 antibody with therapeutic potential in asthma. Clin Exp Immunol 130(1):93–100CrossRefGoogle Scholar
  25. 25.
    Borish LC et al (1999) Interleukin-4 receptor in moderate atopic asthma: a phase I/II randomized, placebo-controlled trial. Am J Respir Crit Care Med 160(6):1816–1823CrossRefGoogle Scholar
  26. 26.
    Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M (2007) Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370(9596):1422–1431CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Ferro
    • 1
    Email author
  • G. Di Lorenzo
    • 20
    • 25
  • M. D. Vartolomei
    • 1
    • 3
  • D. Bruzzese
    • 21
  • F. Cantiello
    • 4
  • G. Lucarelli
    • 5
  • G. Musi
    • 1
  • S. Di Stasi
    • 6
  • R. Hurle
    • 7
  • G. Guazzoni
    • 8
  • G. M. Busetto
    • 9
  • A. Gabriele
    • 9
  • F. Del Giudice
    • 9
  • R. Damiano
    • 4
  • F. Perri
    • 10
  • S. Perdona
    • 10
  • P. Verze
    • 11
  • M. Borghesi
    • 12
  • R. Schiavina
    • 12
  • G. L. Almeida
    • 13
  • P. Bove
    • 14
  • E. Lima
    • 15
  • R. Autorino
    • 16
  • N. Crisan
    • 17
  • A. R. Abu Farhan
    • 4
  • M. Battaglia
    • 5
  • G. I. Russo
    • 18
  • Vincenzo Ieluzzi
    • 20
  • G. Morgia
    • 18
  • P. De Placido
    • 20
  • D. Terracciano
    • 19
  • A. Cimmino
    • 24
  • L. Scafuri
    • 20
  • V. Mirone
    • 11
  • O. De Cobelli
    • 1
  • S. Shariat
    • 2
  • Guru Sonpavde
    • 23
  • C. Buonerba
    • 20
    • 22
  1. 1.Division of UrologyEuropean Institute of OncologyMilanItaly
  2. 2.Department of UrologyMedical University of ViennaViennaAustria
  3. 3.Department of Cell and Molecular BiologyUniversity of Medicine and PharmacyTirgu MuresRomania
  4. 4.Department of UrologyMagna Graecia University of CatanzaroCatanzaroItaly
  5. 5.Department of Emergency and Organ Transplantation, Urology, Andrology and Kidney Transplantation UnitUniversity of BariBariItaly
  6. 6.Department of Experimental Medicine and SurgeryTor Vegata UniversityRomeItaly
  7. 7.Department of UrologyIstituto Clinico Humanitas Istituto di Ricovero e Cura a Carattere Scientifico-Clinical and Research HospitalMilanItaly
  8. 8.Department of Biomedical ScienceHumanitas UniversityMilanItaly
  9. 9.Department of UrologySapienza University of RomeRomeItaly
  10. 10.Uro-Gynecological DepartmentIstituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione “G. Pascale” IRCCSNaplesItaly
  11. 11.Department of Neurosciences, Sciences of Reproduction and Odontostomatology, Urology UnitUniversity of Naples “Federico II”NaplesItaly
  12. 12.Department of UrologyUniversity of BolognaBolognaItaly
  13. 13.Departamento de Urologia, University of Vale do ItajaíItajaíBrazil
  14. 14.Division of Urology, Department of Experimental Medicine and Surgery, Urology UnitTor Vergata University of RomeRomeItaly
  15. 15.Life and Health Sciences Research Institute, University of MinhoBragaPortugal
  16. 16.Division of UrologyVirginia Commonwealth UniversityRichmondUSA
  17. 17.Department of UrologyUniversity of Medicine and Pharmacy “Iuliu Haţeganu,”Cluj-NapocaRomania
  18. 18.Department of UrologyUniversity of CataniaCataniaItaly
  19. 19.Department of Translational Medical SciencesUniversity of Naples “Federico II”NaplesItaly
  20. 20.Department of Clinical Medicine and SurgeryFederico II University of NaplesNaplesItaly
  21. 21.Department of Public HealthFederico II University of NaplesNaplesItaly
  22. 22.Zoo-prophylactic Institute of Southern ItalyPorticiItaly
  23. 23.Dana-Farber Cancer Institute, GU Oncology DivisionHarvard Medical SchoolBostonUSA
  24. 24.Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNRNaplesItaly
  25. 25.Department of MedicineUniversità degli Studi del MoliseCampobassoItaly

Personalised recommendations