Skip to main content

Advertisement

Log in

RAB38 promotes bladder cancer growth by promoting cell proliferation and motility

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Background

Bladder cancer is the most common malignancy of urinary system with high morbidity and mortality. In general, the development and progression of bladder cancer are complicated pathological processes, and the treatment methods mainly include surgical resection, radiotherapy, chemotherapy, and combined therapy. In recent years, targeted therapy has made progress in the treatment of bladder cancer. Therefore, to improve survival rates of patients with advanced bladder cancer, novel therapeutic targets are still urgently needed.

Methods and results

In this study, we found that RAB38 expressed in tumor tissues of patients with bladder cancer was linked to clinical features including pTNM stage and tumor recurrence, and positively correlated with the poor prognosis of bladder cancer. Notably, further results indicated that depletion of RAB38 could significantly inhibit the proliferation and motility of two types of human bladder cancer cells, T24 and 5637 cells. In addition, RAB38 ablation obviously blocked tumor growth and development in mice compared with control.

Conclusion

In conclusion, this study provides significant evidence that RAB38 promotes the development of bladder cancer and provides a novel therapeutic target of bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Skeldon SC, Larry Goldenberg S (2015) Bladder cancer: a portal into men’s health. Urol Oncol 33:40–44

    Article  PubMed  Google Scholar 

  2. Miremami J, Kyprianou N (2014) The promise of novel molecular markers in bladder cancer. Int J Mol Sci 15:23897–23908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amling CL (2001) Diagnosis and management of superficial bladder cancer. Curr Probl Cancer 25:219–278

    Article  CAS  PubMed  Google Scholar 

  4. Dalbagni G (2007) The management of superficial bladder cancer. Nat Clin Pract Urol 4:254–260

    Article  PubMed  Google Scholar 

  5. Xia L, Guzzo TJ (2017) Preoperative anemia and low hemoglobin level are associated with worse clinical outcomes in patients with bladder cancer undergoing radical cystectomy: a meta-analysis. Clin Genitourin Cancer 15:263–272

    Article  PubMed  Google Scholar 

  6. Woldu SL, Bagrodia A, Lotan Y (2017) Guideline of guidelines: non-muscle-invasive bladder cancer. BJU Int 119:371–380

    Article  PubMed  PubMed Central  Google Scholar 

  7. Anghel RM, Gales LN, Trifanescu OG (2016) Outcome of urinary bladder cancer after combined therapies. J Med Life 9:153–159

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Black PC, Agarwal PK, Dinney CP (2007) Targeted therapies in bladder cancer–an update. Urol Oncol 25:433–438

    Article  CAS  PubMed  Google Scholar 

  9. Voutsinas GE, Stravopodis DJ (2009) Molecular targeting and gene delivery in bladder cancer therapy. J BUON 14(Suppl 1):S69–S78

    PubMed  Google Scholar 

  10. Railkar R, Krane LS, Li QQ, Sanford T, Siddiqui MR, Haines D, Vourganti S, Brancato SJ, Choyke PL, Kobayashi H, Agarwal PK (2017) Epidermal growth factor receptor (EGFR)-targeted photoimmunotherapy (PIT) for the treatment of EGFR-expressing bladder cancer. Mol Cancer Ther 16:2201–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cohen AJ, Packiam V, Nottingham C, Steinberg G, Smith ND, Patel S (2017) Upstaging of nonurothelial histology in bladder cancer at the time of surgical treatment in the National Cancer Data Base. Urol Oncol 35:34 e31–34 e38

    Article  CAS  Google Scholar 

  12. Ohbayashi N, Fukuda M, Kanaho Y (2017) Rab32 subfamily small GTPases: pleiotropic Rabs in endosomal trafficking. J Biochem 162:65–71

    Article  CAS  PubMed  Google Scholar 

  13. Numrich J, Ungermann C (2014) Endocytic Rabs in membrane trafficking and signaling. Biol Chem 395:327–333

    Article  CAS  PubMed  Google Scholar 

  14. Wang S, Hu C, Wu F, He S (2017) Rab25 GTPase: functional roles in cancer. Oncotarget 8:64591–64599

    PubMed  PubMed Central  Google Scholar 

  15. Zhao H, Wang Q, Wang X, Zhu H, Zhang S, Wang W, Wang Z, Huang J (2016) Correlation between RAB27B and p53 expression and overall survival in pancreatic cancer. Pancreas 45:204–210

    Article  CAS  PubMed  Google Scholar 

  16. Osanai K, Takahashi K, Nakamura K, Takahashi M, Ishigaki M, Sakuma T, Toga H, Suzuki T, Voelker DR (2005) Expression and characterization of Rab38, a new member of the Rab small G protein family. Biol Chem 386:143–153

    Article  CAS  PubMed  Google Scholar 

  17. Bultema JJ, Boyle JA, Malenke PB, Martin FE, Dell’Angelica EC, Cheney RE, Di Pietro SM (2014) Myosin vc interacts with Rab32 and Rab38 proteins and works in the biogenesis and secretion of melanosomes. J Biol Chem 289:33513–33528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Osanai K (2018) Rab38 mutation and the lung phenotype. Int J Mol Sci 19:2203

    Article  CAS  PubMed Central  Google Scholar 

  19. Wang H, Jiang C (2013) RAB38 confers a poor prognosis, associated with malignant progression and subtype preference in glioma. Oncol Rep 30:2350–2356

    Article  CAS  PubMed  Google Scholar 

  20. Jäger D, Stockert E, Jäger E, Güre AO, Scanlan MJ, Knuth A, Old LJ, Chen YT (2000) Serological cloning of a melanocyte rab guanosine 5′-triphosphate-binding protein and a chromosome condensation protein from a melanoma complementary DNA library. Can Res 60:3584

    Google Scholar 

  21. Vuruputuri U, Abdelmonsef AH, Dulapalli R, Dasari T, Padmarao LS, Mukkera T (2016) Structure based drug discovery of Rab38 protein- Identification of antagonists as cancer drug candidates. Comb Chem High Throughput Screening 19:875

    Google Scholar 

  22. van Kessel KE, Zuiverloon TC, Alberts AR, Boormans JL, Zwarthoff EC (2015) Targeted therapies in bladder cancer: an overview of in vivo research. Nat Rev Urol 12:681–694

    Article  CAS  PubMed  Google Scholar 

  23. Hattula K, Peranen J (2005) Purification and functional properties of a Rab8-specific GEF (Rabin3) in action remodeling and polarized transport. Methods Enzymol 403:284–295

    Article  CAS  PubMed  Google Scholar 

  24. Mendoza PA, Silva P, Diaz J, Arriagada C, Canales J, Cerda O, Torres VA (2017) Calpain2 mediates Rab5-driven focal adhesion disassembly and cell migration. Cell Adh Migr 12:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Knodler A, Feng S, Zhang J, Zhang X, Das A, Peranen J, Guo W (2010) Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc Natl Acad Sci USA 107:6346–6351

    Article  PubMed  Google Scholar 

  26. Chia WJ, Tang BL (2009) Emerging roles for Rab family GTPases in human cancer. Biochim Biophys Acta 1795:110–116

    CAS  PubMed  Google Scholar 

  27. Li Z, Fang R, Fang J, He S, Liu T (2018) Functional implications of Rab27 GTPases in Cancer. Cell Commun Signal 16:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Jia Q, Zhang Q, Wan Y (2015) Rab25 upregulation correlates with the proliferation, migration, and invasion of renal cell carcinoma. Biochem Biophys Res Commun 458:745–750

    Article  CAS  PubMed  Google Scholar 

  29. Just WW, Peranen J (1863) Small GTPases in peroxisome dynamics. Biochim Biophys Acta 2016:1006–1013

    Google Scholar 

  30. Geng D, Zhao W, Feng Y, Liu J (2016) Overexpression of Rab25 promotes hepatocellular carcinoma cell proliferation and invasion. Tumour Biol 37:7713–7718

    Article  CAS  PubMed  Google Scholar 

  31. Ninkovic I, White JG, Rangel-Filho A, Datta YH (2008) The role of Rab38 in platelet dense granule defects. J Thromb Haemost 6:2143–2151

    Article  CAS  PubMed  Google Scholar 

  32. Zippelius A, Gati A, Bartnick T, Walton S, Odermatt B, Jaeger E, Dummer R, Urosevic M, Filonenko V, Osanai K, Moch H, Chen YT, Old LJ, Knuth A, Jaeger D (2007) Melanocyte differentiation antigen RAB38/NY-MEL-1 induces frequent antibody responses exclusively in melanoma patients. Cancer Immunol Immunother 56:249–258

    Article  CAS  PubMed  Google Scholar 

  33. Creaney J, Dick IM, Musk AW, Olsen NJ, Robinson BW (2016) Immune response profiling of malignant pleural mesothelioma for diagnostic and prognostic biomarkers. Biomarkers 21:551–561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Tianjin natural science fund (18JCYBJC26200) and Tianjin education commission project (2017KJ207).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Da-Wei Tian, Chang-Li Wu, and Sheng-Lai Liu. Performed the experiments: Da-Wei Tian, Sheng-Lai Liu, Li-Ming Jiang, Zhou-Liang Wu, and Jie Gao. Contributed reagents/materials/analysis tools: Li-Ming Jiang, Zhou-Liang Wu, Jie Gao, Chang-Li Wu, Hai-Long Hu. Wrote the paper: Da-Wei Tian, Sheng-Lai Liu, Li-Ming Jiang and Chang-Li Wu.

Corresponding authors

Correspondence to Da-Wei Tian or Chang-Li Wu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Research involving human and animal participants

All applicable international, national, and/or institutional guidelines for the care and use of human tissues and animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, DW., Liu, SL., Jiang, LM. et al. RAB38 promotes bladder cancer growth by promoting cell proliferation and motility. World J Urol 37, 1889–1897 (2019). https://doi.org/10.1007/s00345-018-2596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-018-2596-9

Keywords

Navigation