Curhan GC (2007) Epidemiology of stone disease. Urol Clin North Am 34(3):287–293. https://doi.org/10.1016/j.ucl.2007.04.003
Article
PubMed
PubMed Central
Google Scholar
Seitz C, Fajkovic H (2013) Epidemiological gender-specific aspects in urolithiasis. World J Urol 31(5):1087–1092. https://doi.org/10.1007/s00345-013-1140-1
Article
PubMed
Google Scholar
Turk C, Petrik A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T (2016) EAU guidelines on diagnosis and conservative management of urolithiasis. Eur Urol 69(3):468–474. https://doi.org/10.1016/j.eururo.2015.07.040
Article
PubMed
Google Scholar
Niemann T, Kollmann T, Bongartz G (2008) Diagnostic performance of low-dose CT for the detection of urolithiasis: a meta-analysis. AJR Am J Roentgenol 191(2):396–401. https://doi.org/10.2214/AJR.07.3414
Article
PubMed
Google Scholar
Nakada SY, Hoff DG, Attai S, Heisey D, Blankenbaker D, Pozniak M (2000) Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology 55(6):816–819
Article
CAS
PubMed
Google Scholar
Knoll T, Schubert AB, Fahlenkamp D, Leusmann DB, Wendt-Nordahl G, Schubert G (2011) Urolithiasis through the ages: data on more than 200,000 urinary stone analyses. J Urol 185(4):1304–1311. https://doi.org/10.1016/j.juro.2010.11.073
Article
PubMed
Google Scholar
Zhang GM, Sun H, Xue HD, Xiao H, Zhang XB, Jin ZY (2016) Prospective prediction of the major component of urinary stone composition with dual-source dual-energy CT in vivo. Clin Radiol 71(11):1178–1183. https://doi.org/10.1016/j.crad.2016.07.012
Article
PubMed
Google Scholar
Spek A, Strittmatter F, Graser A, Kufer P, Stief C, Staehler M (2016) Dual energy can accurately differentiate uric acid-containing urinary calculi from calcium stones. World J Urol 34(9):1297–1302. https://doi.org/10.1007/s00345-015-1756-4
Article
CAS
PubMed
Google Scholar
Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257(1):158–166. https://doi.org/10.1148/radiol.10100047
Article
PubMed
Google Scholar
Chaytor RJ, Rajbabu K, Jones PA, McKnight L (2016) Determining the composition of urinary tract calculi using stone-targeted dual-energy CT: evaluation of a low-dose scanning protocol in a clinical environment. Br J Radiol 89(1067):20160408. https://doi.org/10.1259/bjr.20160408
Article
PubMed
PubMed Central
Google Scholar
Bonatti M, Lombardo F, Zamboni GA, Pernter P, Pycha A, Mucelli RP, Bonatti G (2017) Renal stones composition in vivo determination: comparison between 100/Sn140 kV dual-energy CT and 120 kV single-energy CT. Urolithiasis 45(3):255–261. https://doi.org/10.1007/s00240-016-0905-6
Article
CAS
PubMed
Google Scholar
Lombardo F, Bonatti M, Zamboni GA, Avesani G, Oberhofer N, Bonelli M, Pycha A, Pozzi Mucelli R, Bonatti G (2017) Uric acid versus non-uric acid renal stones: in vivo differentiation with spectral CT. Clin Radiol 72(6):490–496. https://doi.org/10.1016/j.crad.2017.01.018
Article
CAS
PubMed
Google Scholar
Wilhelm K, Schoenthaler M, Hein S, Adams F, Schlager D, Kuehhas FE, Sevcenco S, Pache G, Langer M, Bulla S, Miernik A (2015) Focused dual-energy CT maintains diagnostic and compositional accuracy for urolithiasis using ultralow-dose noncontrast CT. Urology 86(6):1097–1102. https://doi.org/10.1016/j.urology.2015.06.052
Article
PubMed
Google Scholar
Akand M, Koplay M, Islamoglu N, Gul M, Kilic O, Erdogdu MB (2016) Role of dual-source dual-energy computed tomography versus X-ray crystallography in prediction of the stone composition: a retrospective non-randomized pilot study. Int Urol Nephrol 48(9):1413–1420. https://doi.org/10.1007/s11255-016-1320-1
Article
CAS
PubMed
Google Scholar
Zheng X, Liu Y, Li M, Wang Q, Song B (2016) Dual-energy computed tomography for characterizing urinary calcified calculi and uric acid calculi: a meta-analysis. Eur J Radiol 85(10):1843–1848. https://doi.org/10.1016/j.ejrad.2016.08.013
Article
PubMed
Google Scholar
Wisenbaugh ES, Paden RG, Silva AC, Humphreys MR (2014) Dual-energy vs conventional computed tomography in determining stone composition. Urology 83(6):1243–1247. https://doi.org/10.1016/j.urology.2013.12.023
Article
PubMed
Google Scholar
Jepperson MA, Cernigliaro JG, Sella D, Ibrahim E, Thiel DD, Leng S, Haley WE (2013) Dual-energy CT for the evaluation of urinary calculi: image interpretation, pitfalls and stone mimics. Clin Radiol 68(12):e707–e714. https://doi.org/10.1016/j.crad.2013.07.012
Article
CAS
PubMed
Google Scholar
Reichard C, Gill BC, Sarkissian C, De S, Monga M (2015) 100% uric acid stone formers: what makes them different? Urology 85(2):296–298. https://doi.org/10.1016/j.urology.2014.10.029
Article
PubMed
Google Scholar
Coe FL (1983) Uric acid and calcium oxalate nephrolithiasis. Kidney Int 24(3):392–403
Article
CAS
PubMed
Google Scholar
Thomas C, Heuschmid M, Schilling D, Ketelsen D, Tsiflikas I, Stenzl A, Claussen CD, Schlemmer HP (2010) Urinary calculi composed of uric acid, cystine, and mineral salts: differentiation with dual-energy CT at a radiation dose comparable to that of intravenous pyelography. Radiology 257(2):402–409. https://doi.org/10.1148/radiol.10100526
Article
PubMed
Google Scholar
Jepperson MA, Cernigliaro JG, el Ibrahim SH, Morin RL, Haley WE, Thiel DD (2015) In vivo comparison of radiation exposure of dual-energy CT versus low-dose CT versus standard CT for imaging urinary calculi. J Endourol 29(2):141–146. https://doi.org/10.1089/end.2014.0026
Article
PubMed
PubMed Central
Google Scholar
Franken A, Gevenois PA, Muylem AV, Howarth N, Keyzer C (2018) In vivo differentiation of uric acid versus non-uric acid urinary calculi with third-generation dual-source dual-energy CT at reduced radiation dose. AJR Am J Roentgenol 210(2):358–363. https://doi.org/10.2214/AJR.17.18091
Article
PubMed
Google Scholar