Advertisement

World Journal of Urology

, Volume 36, Issue 2, pp 285–291 | Cite as

Should mini percutaneous nephrolithotomy (MiniPNL/Miniperc) be the ideal tract for medium-sized renal calculi (15–30 mm)?

  • Rajesh A. KukrejaEmail author
Original Article

Abstract

Introduction

Reducing the percutaneous nephrolithotomy (PCNL) tract size reduces the morbidity associated with the procedure. Prolonged procedure time is a concern. Modification in technique required is to fragment the stone into smaller particles and remove them using the vacuum cleaner effect. This prospective study compares the efficacy and morbidity of reducing the tract size from the standard 24–16.5 Fr for stones sized from 16 to 30 mm.

Methods

123 patients were enrolled in this prospective study and distributed into 2 groups based on the tract size used (group A 16.5/17.5 Fr Miniperc, N = 61 and group B: 22/24 Fr standard PCNL, N = 62). Critical factors assessed were procedure time, fluoroscopy time, blood loss, pain score, stone clearance status and complications.

Results

Both the groups were comparable with respect to age, creatinine and stone size. The blood loss (hemoglobin and PCV drop) was significantly less for group A (p < 0.001). Both the groups were comparable with regards to the pain score (p > 0.05). Nephrostomy was placed in 3 patients in group A and 14 patients in group B (p = 0.01). There was no significant difference in the procedure time amongst the 2 groups. A total of 9 patients (4 in group A and 5 in group B) had residual fragments greater than 3 mm.

Conclusion

The 16.5 Fr Miniperc tract offers lower morbidity in terms of blood loss and maintains stone clearance comparable to larger 24 Fr tract size. It should be the ideal size used for medium sized renal stones.

Keywords

Miniperc PCNL Tract size Renal calculi Bleeding Tubeless 

References

  1. 1.
    Turk C, Knoll T, Petrik A et al (2015) Guidelines on urolithiasis. European Association of Urology. http://uroweb.org/wp-content/uploads/22-Urolithiasis_LR_full.pdf
  2. 2.
    Seitz C, Desai M, Häcker A et al (2012) Incidence, prevention, and management of complications following percutaneous nephrolitholapaxy. Eur Urol 61:146–158CrossRefPubMedGoogle Scholar
  3. 3.
    Yamaguchi A, Skolarikos A, Buchholz NP et al (2011) Operating times and bleeding complications in percutaneous nephrolithotomy: a comparison of tract dilation methods in 5,537 patients in the Clinical Research Office of the Endourological Society Percutaneous Nephrolithotomy Global Study. J Endourol 25:933–939CrossRefPubMedGoogle Scholar
  4. 4.
    Kukreja R, Desai M, Patel S et al (2004) Factors affecting blood loss during percutaneous nephrolithotomy: prospective study. J Endourol 18:715–722CrossRefPubMedGoogle Scholar
  5. 5.
    Jackman SV, Docimo SG, Cadeddu JA et al (1998) The “mini-perc” technique: a less invasive alternative to percutaneous nephrolithotomy. World J Urol 16:371CrossRefPubMedGoogle Scholar
  6. 6.
    Schilling D, Hüsch T, Bader M et al (2015) Nomenclature in PCNL or The Tower Of Babel: a proposal for a uniform terminology. World J Urol 33:1905CrossRefPubMedGoogle Scholar
  7. 7.
    Giusti G, Piccinelli A, Taverna G et al (2007) Miniperc? No, thank you! Eur Urol 51:810–815CrossRefPubMedGoogle Scholar
  8. 8.
    Mishra S, Sharma R et al (2011) Prospective comparative study of Miniperc and standard PNL for treatment of 1 to 2 cm size renal stone. BJU Int 108:896–900PubMedGoogle Scholar
  9. 9.
    Knoll T, Wezel F, Michel MS et al (2010) Do patients benefit from miniaturized tubeless percutaneous nephrolithotomy? A comparative prospective study. J Endourol 24(7):1075–1079CrossRefPubMedGoogle Scholar
  10. 10.
    Cheng F, Yu W, Zhang X et al (2010) Minimally invasive tract in percutaneous nephrolithotomy for renal stones. J Endourol 24(10):1579–1582CrossRefPubMedGoogle Scholar
  11. 11.
    Zhong W, Zeng G, Wu W et al (2011) Minimally invasive percutaneous nephrolithotomy with multiple mini tracts in a single session in treating staghorn calculi. Urol Res 39:117–122CrossRefPubMedGoogle Scholar
  12. 12.
    Zeng G et al (2013) Minimally Invasive PCNL for simple and complex renal calyceal stones: a comparative analysis of more than 10000 cases. J Endourol 27(10):1203–1208CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhu W, Liu Y, Liu L et al (2015) Minimally invasive versus standard percutaneous nephrolithotomy: a meta-analysis. Urolithiasis 43(6):563–570CrossRefPubMedGoogle Scholar
  14. 14.
    Lange JN, Gutierrez-Aceves J (2017) Comparative outcomes of conventional PCNL and miniaturized PCNL in the treatment of kidney stones: does a miniaturized tract improve quality of care? Urol Pract.  https://doi.org/10.1016/j.urpr.2017.04.003 Google Scholar
  15. 15.
    Nicklas AP, Schilling D, Bader MJ, Herrmann TRW, Nagele U (2015) The vacuum cleaner effect in minimally invasive percutaneous nephrolitholapaxy. WJU 33:1847–1853CrossRefGoogle Scholar
  16. 16.
    Ganesamoni R, Sabnis RB, Mishra S, Parekh N, Ganpule A, Vyas JB, Jagtap J, Desai M (2013) Prospective randomized controlled trial comparing laser lithotripsy with pneumatic lithotripsy in Miniperc for renal calculi. J Endourol 27(12):1444–1449CrossRefPubMedGoogle Scholar
  17. 17.
    Teichman JM, Bellman GC et al (1998) Holmium:YAG lithotripsy yields smaller fragments than lithoclast, pulsed dye laser or electrohydraulic lithotripsy. J Urol 159(1):17–23CrossRefPubMedGoogle Scholar
  18. 18.
    Olbert P, Weber J, Hegel A et al (2003) Combining lithoclast and ultrasound power in one device for percutaneous nephro-lithotomy: in vitro results of a novel and highly effective technology. Urology 61:55–59CrossRefPubMedGoogle Scholar
  19. 19.
    Chew BN, Matteliano AA et al (2017) Benchtop and initial clinical evaluation of the shockpulse stone eliminator in percutaneous nephrolithotomy. J Endourol 31:191–197CrossRefPubMedGoogle Scholar
  20. 20.
    Okhunov Z, del Junco M, Yoon R et al (2014) In vitro evaluation of LithAssist: a novel combined holmium laser and suction device. J Endourol 28:980–984CrossRefPubMedGoogle Scholar
  21. 21.
    Dauw CA, Borofsky MS, York N, Lingeman JE (2016) A usability comparison of laser suction handpieces for percutaneous nephrolithotomy. J Endourol 30:1165–1168CrossRefPubMedGoogle Scholar
  22. 22.
    Singh A, Jairath A, Chhabra J, Mishra S, Ganpule A, Sabnis R, Desai M (2016) Laser with suction as an energy source in mini percutaneous nephrolithotomy: MPUH experience. J Endourol Videourol.  https://doi.org/10.1089/vid.2016.0007 Google Scholar
  23. 23.
    Lu Y, Ping JG, Zhao XJ et al (2013) Randomized prospective trial of tubeless versus conventional minimally invasive percutaneous nephrolithotomy. World J Urol 31:1303–1307CrossRefPubMedGoogle Scholar
  24. 24.
    Desai MR, Kukreja R, Desai MM et al (2004) A prospective randomized comparison of type of nephrostomy drainage following percutaneous nephrostolithotomy: large bore versus small bore versus tubeless. J Urol 172:565–567CrossRefPubMedGoogle Scholar
  25. 25.
    Desai J et al (2016) Prospective outcomes of ultra mini percutaneous nephrolithotomy: a consecutive cohort study. J Urol 195:741–746CrossRefPubMedGoogle Scholar
  26. 26.
    Sountoulides P, Metaxa L, Cindolo L (2013) Is computed tomography mandatory for the detection of residual stone fragments after percutaneous nephrolithotomy? J Endourol 27(11):1341–1348CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.UrocareIndoreIndia

Personalised recommendations