Skip to main content
Log in

Uncovering the real outcomes of active renal stone treatment by utilizing non-contrast computer tomography: a systematic review of the current literature

  • Invited Review
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the stone-free rates (SFRs) and stone clearance rates (SCRs) of extracorporeal shock-wave lithotripsy (SWL), retrograde intrarenal surgery (RIRS), and percutaneous nephrolitholapaxy (PCNL) according to non-contrast computer tomography (NCCT) findings.

Methods

Original articles were identified from PubMed. After exclusion of ineligible papers, twenty-three studies with 2494 cases were included in the review.

Results

Six SWL, five RIRS and eight PCNL studies were selected. Additionally, four comparative articles were identified. SWL presents SFRs ranging 35–61.3 % and SCRs for residuals <4 mm being 43.2–92.9 %. RIRS studies report SFRs of 34.8–59.7 % and SCRs for residuals <4 mm ranging 48–96.7 %. Finally, PCNL presents SFRs of 20.8–100 % and SCRs for residuals <4 mm being 41.5–91.4 %. According to the comparative studies, SFRs are 17–61.3 % for SWL, 50 % for RIRS, and 95–100 % for PCNL.

Conclusions

According to NCCT findings, it seems that PCNL provides better SFRs than ESWL and RIRS. However, further research with comparable and complete preoperative parameters and outcomes could reduce the heterogeneity of current data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Turk C, Petrik A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T (2016) EAU guidelines on interventional treatment for urolithiasis. Eur Urol 69(3):475–482. doi:10.1016/j.eururo.2015.07.041

    Article  PubMed  Google Scholar 

  2. Resorlu B, Unsal A, Ziypak T, Diri A, Atis G, Guven S, Sancaktutar AA, Tepeler A, Bozkurt OF, Oztuna D (2013) Comparison of retrograde intrarenal surgery, shockwave lithotripsy, and percutaneous nephrolithotomy for treatment of medium-sized radiolucent renal stones. World J Urol 31(6):1581–1586. doi:10.1007/s00345-012-0991-1

    Article  PubMed  Google Scholar 

  3. De S, Autorino R, Kim FJ, Zargar H, Laydner H, Balsamo R, Torricelli FC, Di Palma C, Molina WR, Monga M, De Sio M (2015) Percutaneous nephrolithotomy versus retrograde intrarenal surgery: a systematic review and meta-analysis. Eur Urol 67(1):125–137. doi:10.1016/j.eururo.2014.07.003

    Article  PubMed  Google Scholar 

  4. Breda A, Ogunyemi O, Leppert JT, Lam JS, Schulam PG (2008) Flexible ureteroscopy and laser lithotripsy for single intrarenal stones 2 cm or greater—is this the new frontier? J Urol 179(3):981–984. doi:10.1016/j.juro.2007.10.083

    Article  PubMed  Google Scholar 

  5. Breda A, Ogunyemi O, Leppert JT, Schulam PG (2009) Flexible ureteroscopy and laser lithotripsy for multiple unilateral intrarenal stones. Eur Urol 55(5):1190–1196. doi:10.1016/j.eururo.2008.06.019

    Article  PubMed  Google Scholar 

  6. Traxer O, Thomas A (2013) Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J Urol 189(2):580–584. doi:10.1016/j.juro.2012.08.197

    Article  PubMed  Google Scholar 

  7. Schoenthaler M, Wilhelm K, Katzenwadel A, Ardelt P, Wetterauer U, Traxer O, Miernik A (2012) Retrograde intrarenal surgery in treatment of nephrolithiasis: is a 100% stone-free rate achievable? J Endourol 26(5):489–493. doi:10.1089/end.2011.0405

    Article  PubMed  Google Scholar 

  8. Pearle MS, Watamull LM, Mullican MA (1999) Sensitivity of noncontrast helical computerized tomography and plain film radiography compared to flexible nephroscopy for detecting residual fragments after percutaneous nephrostolithotomy. J Urol 162(1):23–26. doi:10.1097/00005392-199907000-00006

    Article  CAS  PubMed  Google Scholar 

  9. Waldmann TB, Lashley DB, Fuchs EF (1999) Unenhanced computerized axial tomography to detect retained calculi after percutaneous ultrasonic lithotripsy. J Urol 162(2):312–314

    Article  CAS  PubMed  Google Scholar 

  10. Kupeli B, Gurocak S, Tunc L, Senocak C, Karaoglan U, Bozkirli I (2005) Value of ultrasonography and helical computed tomography in the diagnosis of stone-free patients after extracorporeal shock wave lithotripsy (USG and helical CT after SWL). Int Urol Nephrol 37(2):225–230. doi:10.1007/s11255-004-7975-z

    Article  PubMed  Google Scholar 

  11. Park J, Hong B, Park T, Park HK (2007) Effectiveness of noncontrast computed tomography in evaluation of residual stones after percutaneous nephrolithotomy. J Endourol 21(7):684–687. doi:10.1089/end.2006.0352

    Article  PubMed  Google Scholar 

  12. Osman Y, El-Tabey N, Refai H, Elnahas A, Shoma A, Eraky I, Kenawy M, El-Kapany H (2008) Detection of residual stones after percutaneous nephrolithotomy: role of nonenhanced spiral computerized tomography. J Urol 179(1):198–200. doi:10.1016/j.juro.2007.08.175 (Discussion 200)

    Article  PubMed  Google Scholar 

  13. Guner B, Gurbuz C, Canat L, Caskurlu T (2012) Place of non contrast thin-slice spiral computed tomography in evaluation of stone-free ratio after percutaneous nephrolithotomy. Curr Urol 6(2):71–75. doi:10.1159/000343512

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gokce MI, Ozden E, Suer E, Gulpinar B, Gulpinar O, Tangal S (2015) Comparison of imaging modalities for detection of residual fragments and prediction of stone related events following percutaneous nephrolitotomy. Int Braz J Urol 41(1):86–90. doi:10.1590/s1677-5538.ibju.2015.01.12

    Article  PubMed  PubMed Central  Google Scholar 

  15. Semins MJ, Bartik L, Chew BH, Hyams ES, Humphreys M, Miller NL, Shah O, Paterson RF, Matlaga BR (2011) Multicenter analysis of postoperative CT findings after percutaneous nephrolithotomy: defining complication rates. Urology 78(2):291–294. doi:10.1016/j.urology.2010.11.008

    Article  PubMed  Google Scholar 

  16. Jellison FC, Smith JC, Heldt JP, Spengler NM, Nicolay LI, Ruckle HC, Koning JL, Millard WW 2nd, Jin DH, Baldwin DD (2009) Effect of low dose radiation computerized tomography protocols on distal ureteral calculus detection. J Urol 182(6):2762–2767. doi:10.1016/j.juro.2009.08.042

    Article  PubMed  Google Scholar 

  17. Niemann T, Kollmann T, Bongartz G (2008) Diagnostic performance of low-dose CT for the detection of urolithiasis: a meta-analysis. AJR Am J Roentgenol 191(2):396–401. doi:10.2214/ajr.07.3414

    Article  PubMed  Google Scholar 

  18. Berkenblit R, Hoenig D, Lerer D, Moses M, Minsky L (2013) Comparison of 0.625-mm source computed tomographic images versus 5-mm thick reconstructed images in the evaluation for renal calculi in at-risk patients. J Endourol 27(2):238–241. doi:10.1089/end.2012.0157

    Article  PubMed  Google Scholar 

  19. Ketelslegers E, Van Beers BE (2006) Urinary calculi: improved detection and characterization with thin-slice multidetector CT. Eur Radiol 16(1):161–165. doi:10.1007/s00330-005-2813-y

    Article  PubMed  Google Scholar 

  20. Clark HD, Wells GA, Huet C, McAlister FA, Salmi LR, Fergusson D, Laupacis A (1999) Assessing the quality of randomized trials: reliability of the Jadad scale. Control Clin Trials 20(5):448–452

    Article  CAS  PubMed  Google Scholar 

  21. Madbouly K, Sheir KZ, Elsobky E (2001) Impact of lower pole renal anatomy on stone clearance after shock wave lithotripsy: fact or fiction? J Urol 165(5):1415–1418

    Article  CAS  PubMed  Google Scholar 

  22. Ng CF, Luke S, Chiu PK, Teoh JY, Wong KT, Hou SS (2015) The effect of renal cortical thickness on the treatment outcomes of kidney stones treated with shockwave lithotripsy. Korean J Urol 56(5):379–385. doi:10.4111/kju.2015.56.5.379

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ouzaid I, Al-qahtani S, Dominique S, Hupertan V, Fernandez P, Hermieu JF, Delmas V, Ravery V (2012) A 970 Hounsfield units (HU) threshold of kidney stone density on non-contrast computed tomography (NCCT) improves patients’ selection for extracorporeal shockwave lithotripsy (ESWL): evidence from a prospective study. BJU Int 110(11 Pt B):E438–E442. doi:10.1111/j.1464-410X.2012.10964.x

    Article  PubMed  Google Scholar 

  24. Torricelli FC, Marchini GS, Yamauchi FI, Danilovic A, Vicentini FC, Srougi M, Monga M, Mazzucchi E (2015) Impact of renal anatomy on shock wave lithotripsy outcomes for lower pole kidney stones: results of a prospective multifactorial analysis controlled by computerized tomography. J Urol 193(6):2002–2007. doi:10.1016/j.juro.2014.12.026

    Article  PubMed  Google Scholar 

  25. Wang LJ, Wong YC, Chuang CK, Chu SH, Chen CS, See LC, Chiang YJ (2005) Predictions of outcomes of renal stones after extracorporeal shock wave lithotripsy from stone characteristics determined by unenhanced helical computed tomography: a multivariate analysis. Eur Radiol 15(11):2238–2243. doi:10.1007/s00330-005-2742-9

    Article  PubMed  Google Scholar 

  26. El-Nahas AR, El-Assmy AM, Mansour O, Sheir KZ (2007) A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol 51(6):1688–1693. doi:10.1016/j.eururo.2006.11.048 (discussion 1693–1684)

    Article  PubMed  Google Scholar 

  27. Deem S, Defade B, Modak A, Emmett M, Martinez F, Davalos J (2011) Percutaneous nephrolithotomy versus extracorporeal shock wave lithotripsy for moderate sized kidney stones. Urology 78(4):739–743. doi:10.1016/j.urology.2011.04.010

    Article  PubMed  Google Scholar 

  28. Pearle MS, Lingeman JE, Leveillee R, Kuo R, Preminger GM, Nadler RB, Macaluso J, Monga M, Kumar U, Dushinski J, Albala DM, Wolf JS Jr, Assimos D, Fabrizio M, Munch LC, Nakada SY, Auge B, Honey J, Ogan K, Pattaras J, McDougall EM, Averch TD, Turk T, Pietrow P, Watkins S (2005) Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J Urol 173(6):2005–2009. doi:10.1097/01.ju.0000158458.51706.56

    Article  PubMed  Google Scholar 

  29. Yuruk E, Binbay M, Sari E, Akman T, Altinyay E, Baykal M, Muslumanoglu AY, Tefekli A (2010) A prospective, randomized trial of management for asymptomatic lower pole calculi. J Urol 183(4):1424–1428. doi:10.1016/j.juro.2009.12.022

    Article  PubMed  Google Scholar 

  30. Portis AJ, Rygwall R, Holtz C, Pshon N, Laliberte M (2006) Ureteroscopic laser lithotripsy for upper urinary tract calculi with active fragment extraction and computerized tomography followup. J Urol 175(6):2129–2133. doi:10.1016/s0022-5347(06)00311-9 (discussion 2133–2124)

    Article  PubMed  Google Scholar 

  31. Macejko A, Okotie OT, Zhao LC, Liu J, Perry K, Nadler RB (2009) Computed tomography-determined stone-free rates for ureteroscopy of upper-tract stones. J Endourol 23(3):379–382. doi:10.1089/end.2008.0240

    Article  PubMed  Google Scholar 

  32. Rippel CA, Nikkel L, Lin YK, Danawala Z, Olorunnisomo V, Youssef RF, Pearle MS, Lotan Y, Raman JD (2012) Residual fragments following ureteroscopic lithotripsy: incidence and predictors on postoperative computerized tomography. J Urol 188(6):2246–2251. doi:10.1016/j.juro.2012.08.040

    Article  PubMed  Google Scholar 

  33. Takazawa R, Kitayama S, Tsujii T (2012) Successful outcome of flexible ureteroscopy with holmium laser lithotripsy for renal stones 2 cm or greater. Int J Urol 19(3):264–267. doi:10.1111/j.1442-2042.2011.02931.x

    Article  PubMed  Google Scholar 

  34. Ito H, Sakamaki K, Kawahara T, Terao H, Yasuda K, Kuroda S, Yao M, Kubota Y, Matsuzaki J (2015) Development and internal validation of a nomogram for predicting stone-free status after flexible ureteroscopy for renal stones. BJU Int 115(3):446–451. doi:10.1111/bju.12775

    Article  PubMed  Google Scholar 

  35. Roy OP, Angle JF, Jenkins AD, Schenkman NS (2012) Cone beam computed tomography for percutaneous nephrolithotomy: initial evaluation of a new technology. J Endourol 26(7):814–818. doi:10.1089/end.2011.0478

    Article  PubMed  Google Scholar 

  36. Geterud K, Henriksson C, Pettersson S, Zachrisson BF (1987) Computed tomography after percutaneous renal stone extraction. Acta Radiol 28(1):55–58

    Article  CAS  PubMed  Google Scholar 

  37. Portis AJ, Laliberte MA, Tatman P, Lendway L, Rosenberg MS, Bretzke CA (2014) Retreatment after percutaneous nephrolithotomy in the computed tomographic era: long-term follow-up. Urology 84(2):279–284. doi:10.1016/j.urology.2014.02.041

    Article  PubMed  Google Scholar 

  38. Akhavein A, Henriksen C, Syed J, Bird VG (2015) Prediction of single procedure success rate using S.T.O.N.E. nephrolithometry surgical classification system with strict criteria for surgical outcome. Urology 85(1):69–73. doi:10.1016/j.urology.2014.09.010

    Article  PubMed  Google Scholar 

  39. White W, Klein F (2006) Five-year clinical experience with the Dornier Delta lithotriptor. Urology 68(1):28–32. doi:10.1016/j.urology.2006.01.031

    Article  PubMed  Google Scholar 

  40. Chung VY, Turney BW (2016) The success of shock wave lithotripsy (SWL) in treating moderate-sized (10–20 mm) renal stones. Urolithiasis. doi:10.1007/s00240-015-0857-2

    Google Scholar 

  41. Alexander CE, Gowland S, Cadwallader J, Reynard JM, Turney BW (2016) Shock wave lithotripsy (SWL): outcomes from a national SWL database in New Zealand. BJU Int 117(Suppl 4):76–81. doi:10.1111/bju.13431

    Article  PubMed  Google Scholar 

  42. Akman T, Binbay M, Ozgor F, Ugurlu M, Tekinarslan E, Kezer C, Aslan R, Muslumanoglu AY (2012) Comparison of percutaneous nephrolithotomy and retrograde flexible nephrolithotripsy for the management of 2–4 cm stones: a matched-pair analysis. BJU Int 109(9):1384–1389. doi:10.1111/j.1464-410X.2011.10691.x

    Article  PubMed  Google Scholar 

  43. Bozkurt OF, Resorlu B, Yildiz Y, Can CE, Unsal A (2011) Retrograde intrarenal surgery versus percutaneous nephrolithotomy in the management of lower-pole renal stones with a diameter of 15 to 20 mm. J Endourol 25(7):1131–1135. doi:10.1089/end.2010.0737

    Article  PubMed  Google Scholar 

  44. Bryniarski P, Paradysz A, Zyczkowski M, Kupilas A, Nowakowski K, Bogacki R (2012) A randomized controlled study to analyze the safety and efficacy of percutaneous nephrolithotripsy and retrograde intrarenal surgery in the management of renal stones more than 2 cm in diameter. J Endourol 26(1):52–57. doi:10.1089/end.2011.0235

    Article  PubMed  Google Scholar 

  45. Ozturk U, Sener NC, Goktug HN, Nalbant I, Gucuk A, Imamoglu MA (2013) Comparison of percutaneous nephrolithotomy, shock wave lithotripsy, and retrograde intrarenal surgery for lower pole renal calculi 10-20 mm. Urol Int 91(3):345–349. doi:10.1159/000351136

    Article  PubMed  Google Scholar 

  46. Eisner BH, Kambadakone A, Monga M, Anderson JK, Thoreson AA, Lee H, Dretler SP, Sahani DV (2009) Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study. J Urol 181(4):1710–1715. doi:10.1016/j.juro.2008.11.116

    Article  PubMed  Google Scholar 

  47. Portis AJ, Laliberte MA, Holtz C, Ma W, Rosenberg MS, Bretzke CA (2008) Confident intraoperative decision making during percutaneous nephrolithotomy: does this patient need a second look? Urology 71(2):218–222. doi:10.1016/j.urology.2007.08.063

    Article  PubMed  Google Scholar 

  48. Osman Y, Harraz AM, El-Nahas AR, Awad B, El-Tabey N, Shebel H, Shoma AM, Eraky I, El-Kenawy M (2013) Clinically insignificant residual fragments: an acceptable term in the computed tomography era? Urology 81(4):723–726. doi:10.1016/j.urology.2013.01.011

    Article  PubMed  Google Scholar 

  49. El-Nahas AR, El-Assmy AM, Madbouly K, Sheir KZ (2006) Predictors of clinical significance of residual fragments after extracorporeal shockwave lithotripsy for renal stones. J Endourol 20(11):870–874. doi:10.1089/end.2006.20.870

    Article  PubMed  Google Scholar 

Download references

Author’s contribution

T Tokas contributed to project development, data collection, data analysis and manuscript writing. M Habicher contributed to data collection and data analysis. D Junker helped in manuscript editing. T Herrmann contributed to manuscript editing. JP Jessen contributed to manuscript editing. T Knoll helped in manuscript editing. U Nagele contributed to project development and manuscript editing.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Udo Nagele.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This review does not involve human participants and/or animals.

Appendices

Appendix 1

The pubMed search was performed by two independent reviewers (TT, MH) and the keywords used were selected after their consensus and the suggestions of the senior author.

Appendix 2

Criteria for considering studies

  • patients/participants: Healthy non-obese adults (mean age: 29.6–62)

  • interventions: SWL, RIRS and standard PCNL

  • comparators: NCCT

  • outcomes: Stone-free rates and stone clearance rates according to NCCT findings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokas, T., Habicher, M., Junker, D. et al. Uncovering the real outcomes of active renal stone treatment by utilizing non-contrast computer tomography: a systematic review of the current literature. World J Urol 35, 897–905 (2017). https://doi.org/10.1007/s00345-016-1943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-016-1943-y

Keywords

Navigation