Skip to main content
Log in

Comparison of treatment outcomes according to output voltage during shockwave lithotripsy for ureteral calculi: a prospective randomized multicenter study

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of fixed versus escalating voltage during SWL on treatment outcomes in patients with ureteral calculi (UC).

Methods

A prospective, randomized, multicenter trial was conducted on 120 patients who were diagnosed with a single radiopaque UC. The patients were randomized into group C (n = 60, constant 13 kV, 3,000 shock wave, 2 Hz) or group E (n = 60, 11.4–12.0–13 kV per 1,000 shock waves, 2 Hz). They were evaluated by plain abdominal radiography and urinalysis at 1 week after a single session of SWL, and repeat SWL was performed if needed. The primary endpoint was stone-free rate at 1 week (SFR1) after SWL. Secondary endpoints were post-SWL visual pain score (VPS), oral analgesic requirements during 1 week, and cumulative SFRs after the second and third sessions of SWL.

Results

Groups C and E were well balanced in terms of baseline patients and stone characteristics, including pre-SWL VPS, stone location, and stone size (6.24 ± 1.92 vs. 6.30 ± 2.13 mm). SFR1s were not significantly different between groups C and E (60.0 vs. 68.3 %, p = 0.447). Analyses stratified by stone size (<6 vs. ≥6 mm) showed no difference in SFR1 (p = 0.148 vs. 0.808). In the analyses stratified by stone location, group E tended to be more effective in distal UC (81.0 vs. 50.0 %, p = 0.052), whereas no difference was seen in proximal UC (p = 0.487). Secondary endpoints were also similar between the two groups.

Conclusions

Our results suggest that voltage escalation during SWL in UC may not provide superior stone fragmentation compared to fixed voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Moon KB, Lim GS, Hwang JS, Lim CH, Lee JW, Son JH, Jang SH (2012) Optimal shock wave rate for shock wave lithotripsy in urolithiasis treatment: a prospective randomized study. Korean J Urol 53(11):790–794. doi:10.4111/kju.2012.53.11.790

    Article  PubMed Central  PubMed  Google Scholar 

  2. Park J, Shin DW, Chung JH, Lee SW (2013) Shock wave lithotripsy versus ureteroscopy for ureteral calculi: a prospective assessment of patient-reported outcomes. World J Urol 31(6):1569–1574. doi:10.1007/s00345-012-0966-2

    Article  PubMed  Google Scholar 

  3. Preminger GM, Tiselius HG, Assimos DG, Alken P, Buck C, Gallucci M, Knoll T, Lingeman JE, Nakada SY, Pearle MS, Sarica K, Turk C, Wolf JS Jr (2007) 2007 guideline for the management of ureteral calculi. J Urol 178(6):2418–2434. doi:10.1016/j.juro.2007.09.107

    Article  PubMed  Google Scholar 

  4. Ghoneim IA, Ziada AM, Elkatib SE (2005) Predictive factors of lower calyceal stone clearance after extracorporeal shockwave lithotripsy (ESWL): a focus on the infundibulopelvic anatomy. Eur Urol 48(2):296–302. doi:10.1016/j.eururo.2005.02.017

    Article  PubMed  Google Scholar 

  5. Pace KT, Ghiculete D, Harju M, Honey RJ (2005) Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol 174(2):595–599. doi:10.1097/01.ju.0000165156.90011.95

    Article  PubMed  Google Scholar 

  6. Madbouly K, El-Tiraifi AM, Seida M, El-Faqih SR, Atassi R, Talic RF (2005) Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol 173(1):127–130. doi:10.1097/01.ju.0000147820.36996.86

    Article  PubMed  Google Scholar 

  7. Yong DZ, Lipkin ME, Simmons WN, Sankin G, Albala DM, Zhong P, Preminger GM (2011) Optimization of treatment strategy used during shockwave lithotripsy to maximize stone fragmentation efficiency. J Endourol 25(9):1507–1511. doi:10.1089/end.2010.0732

    Article  PubMed  Google Scholar 

  8. Zhou Y, Cocks FH, Preminger GM, Zhong P (2004) The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. J Urol 172(1):349–354. doi:10.1097/01.ju.0000132356.97888.8b

    Article  PubMed  Google Scholar 

  9. Maloney ME, Marguet CG, Zhou Y, Kang DE, Sung JC, Springhart WP, Madden J, Zhong P, Preminger GM (2006) Progressive increase of lithotripter output produces better in vivo stone comminution. J Endourol 20(9):603–606. doi:10.1089/end.2006.20.603

    Article  PubMed Central  PubMed  Google Scholar 

  10. Demirci D, Sofikerim M, Yalcin E, Ekmekcioglu O, Gulmez I, Karacagil M (2007) Comparison of conventional and step-wise shockwave lithotripsy in management of urinary calculi. J Endourol 21(12):1407–1410. doi:10.1089/end.2006.0399

    Article  PubMed  Google Scholar 

  11. Lambert EH, Walsh R, Moreno MW, Gupta M (2010) Effect of escalating versus fixed voltage treatment on stone comminution and renal injury during extracorporeal shock wave lithotripsy: a prospective randomized trial. J Urol 183(2):580–584. doi:10.1016/j.juro.2009.10.025

    Article  PubMed  Google Scholar 

  12. Honey RJ, Ray AA, Ghiculete D, Pace KT (2010) Shock wave lithotripsy: a randomized, double-blind trial to compare immediate versus delayed voltage escalation. Urology 75(1):38–43. doi:10.1016/j.urology.2008.12.070

    Article  PubMed  Google Scholar 

  13. You D, Park J, Hong B, Park HK (2010) Effect of output voltage distribution on stone comminution efficiency during shockwave lithotripsy in renal or ureteropelvic junction stones: a preliminary study. Scand J Urol Nephrol 44(4):236–241. doi:10.3109/00365591003727569

    Article  PubMed  Google Scholar 

  14. Park J, Hong B, Park T, Park HK (2007) Effectiveness of noncontrast computed tomography in evaluation of residual stones after percutaneous nephrolithotomy. J Endourol 21(7):684–687. doi:10.1089/end.2006.0352

    Article  PubMed  Google Scholar 

  15. Seitz C, Liatsikos E, Porpiglia F, Tiselius HG, Zwergel U (2009) Medical therapy to facilitate the passage of stones: what is the evidence? Eur Urol 56(3):455–471. doi:10.1016/j.eururo.2009.06.012

    Article  PubMed  Google Scholar 

  16. Bensalah K, Pearle M, Lotan Y (2008) Cost-effectiveness of medical expulsive therapy using alpha-blockers for the treatment of distal ureteral stones. Eur Urol 53(2):411–418. doi:10.1016/j.eururo.2007.09.012

    Article  PubMed  Google Scholar 

  17. Neisius A, Wollner J, Thomas C, Roos FC, Brenner W, Hampel C, Preminger GM, Thuroff JW, Gillitzer R (2013) Treatment efficacy and outcomes using a third generation shockwave lithotripter. BJU Int 112(7):972–981. doi:10.1111/bju.12159

    PubMed  Google Scholar 

  18. Lindqvist K, Holmberg G, Peeker R, Grenabo L (2006) Extracorporeal shock-wave lithotripsy or ureteroscopy as primary treatment for ureteric stones: a retrospective study comparing two different treatment strategies. Scand J Urol Nephrol 40(2):113–118. doi:10.1080/00365590410028683

    Article  PubMed  Google Scholar 

  19. Zhu S, Cocks FH, Preminger GM, Zhong P (2002) The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol 28(5):661–671. doi:10.1016/S0301-5629(02)00506-9

    Article  PubMed  Google Scholar 

  20. Zhong P, Chuong CJ, Preminger GM (1993) Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: application in extracorporeal shock wave lithotripsy. J Acoust Soc Am 94(1):29–36. doi:10.1121/1.407088

    Article  CAS  PubMed  Google Scholar 

  21. Coleman AJ, Saunders JE, Crum LA, Dyson M (1987) Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med Biol 13(2):69–76. doi:10.1016/0301-5629(87)90076-7

    Article  CAS  PubMed  Google Scholar 

  22. Parr NJ, Pye SD, Ritchie AW, Tolley DA (1992) Mechanisms responsible for diminished fragmentation of ureteral calculi: an experimental and clinical study. J Urol 148(3 Pt 2):1079–1083

    CAS  PubMed  Google Scholar 

  23. Zhu Y, Duijvesz D, Rovers MM, Lock TM (2010) alpha-Blockers to assist stone clearance after extracorporeal shock wave lithotripsy: a meta-analysis. BJU Int 106(2):256–261. doi:10.1111/j.1464-410X.2009.09014.x

    Article  PubMed  Google Scholar 

  24. Semins MJ, Trock BJ and Matlaga BR (2008) The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol 179(1):194–197; discussion 197. doi:10.1016/j.juro.2007.08.173

  25. Shao Y, Connors BA, Evan AP, Willis LR, Lifshitz DA, Lingeman JE (2003) Morphological changes induced in the pig kidney by extracorporeal shock wave lithotripsy: nephron injury. Anat Rec A Discov Mol Cell Evol Biol 275(1):979–989. doi:10.1002/ar.a.10115

    Article  PubMed  Google Scholar 

  26. McAteer JA, Evan AP (2008) The acute and long-term adverse effects of shock wave lithotripsy. Semin Nephrol 28(2):200–213. doi:10.1016/j.semnephrol.2008.01.003

    Article  PubMed Central  PubMed  Google Scholar 

  27. Connors BA, Evan AP, Blomgren PM, Handa RK, Willis LR, Gao S, McAteer JA, Lingeman JE (2009) Extracorporeal shock wave lithotripsy at 60 shock waves/min reduces renal injury in a porcine model. BJU Int 104(7):1004–1008. doi:10.1111/j.1464-410X.2009.08520.x

    Article  PubMed Central  PubMed  Google Scholar 

  28. Fahmy N, Sener A, Sabbisetti V, Nott L, Lang RM, Welk BK, Mendez-Probst CE, MacPhee RA, VanEerdewijk S, Cadieux PA, Bonventre JV, Razvi H (2013) Urinary expression of novel tissue markers of kidney injury after ureteroscopy, shockwave lithotripsy, and in normal healthy controls. J Endourol 27(12):1455–1462. doi:10.1089/end.2013.0188

    Article  PubMed Central  PubMed  Google Scholar 

  29. Robert M, Rakotomalala E, Delbos O, Navratil H (1999) Piezoelectric lithotripsy of ureteral stones: influence of shockwave frequency on sedation and therapeutic efficiency. J Endourol 13(3):157–160. doi:10.1089/end.1999.13.157

    Article  CAS  PubMed  Google Scholar 

  30. Hanna MK, Jeffs RD, Sturgess JM, Barkin M (1976) Ureteral structure and ultrastructure. Part I. The normal human ureter. J Urol 116(6):718–724

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Kim, HW., Hong, S. et al. Comparison of treatment outcomes according to output voltage during shockwave lithotripsy for ureteral calculi: a prospective randomized multicenter study. World J Urol 33, 609–615 (2015). https://doi.org/10.1007/s00345-014-1438-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-014-1438-7

Keywords

Navigation