Skip to main content
Log in

New developed urological protocols for the Uro Dyna-CT reduce radiation exposure of endourological patients below the levels of the low dose standard CT scans

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Cross-sectional imaging by computed tomography (CT) is associated with higher radiation dose compared to plain X-ray. The Uro Dyna-CT provides CT-like images in the endourological operating room. Our aim was to reduce the radiation exposure of endourological patients with the Uro Dyna-CT and optimize the cross-sectional image quality.

Materials and methods

For the hard contrast protocol, two artificial stones were placed in a Rando–Alderson phantom’s left kidney region. Relevant parameters of the standard abdomen protocol were changed. After each modification, two urologists subjectively evaluated the image quality. We developed two customized protocols (standard, low-dose) for hard contrast imaging. To optimize the examination protocol for soft tissue imaging a standardized cone beam phantom was used. Parameters of the preset high-resolution protocol were changed to develop a protocol with similar objective image quality but lower radiation dose. To evaluate the effective radiation dose we embedded 129 thermoluminescence dosimeters in the kidney and ureter region of the Rando–Alderson phantom and performed each protocol five times (stone, soft tissue) and ten times (low-dose protocol). Mean effective dose values per 3D-examination were calculated.

Results

We detected a dose area product (DAP) 776.2 (standard) and 163.5 μGym2 (low-dose) for the stone protocols with an effective dose of 1.96 and 0.33 mSv, respectively. The soft tissue protocol produced a DAP of 5,070 μGym2 and an effective dose of 7.76 mSv.

Conclusion

Our newly developed examination protocols for the Uro Dyna-CT provide CT-like image quality during urological interventions with low radiation dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

mSV:

Millisievert

TLDs:

Thermoluminescence dosimeters

DAP:

Dose area product

References

  1. Bueschen AJ, Lockhart ME (2011) Evolution of urological imaging. Int J Urol 18(2):102–112. doi:10.1111/j.1442-2042.2010.02677.x

    Article  PubMed  Google Scholar 

  2. Michel MS, Ritter M, Schönberg S, Häcker A, Weisser G (2012) The urological Dyna-CT: urological cross-sectional imaging on a newly developed urological intervention table. Urologe A. doi:10.1007/s00120-012-2837-2

    Google Scholar 

  3. Ritter M, Rassweiler MC, Häcker A, Michel MS (2012) Laser-guided percutaneous kidney access with the Uro Dyna-CT: first experience of three-dimensional puncture planning with an ex vivo model. World J Urol. doi:10.1007/s00345-012-0847-8

    Google Scholar 

  4. Kraus MD, Krischak G, Keppler P, Gebhard FT, Schuetz UH (2010) Can computer-assisted surgery reduce the effective dose for spinal fusion and sacroiliac screw insertion? Clin Orthop Relat Res 468(9):2419–2429. doi:10.007/s11999-010-1393-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gebhard FT, Kraus MD, Schneider E, Liener UC, Kinzl L, Arand M (2006) Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine (Phila Pa 1976) 31(17):2024–2027

    Article  Google Scholar 

  6. Bai M, Liu B, Mu H, Liu X, Jiang Y (2011) The comparison of radiation dose between c-arm flat-detector CT (DynaCT) and multi-slice CT (MSCT): a phantom study. Eur J Radiol. doi:10.1016/j.ejrad.2011.09.006

    Google Scholar 

  7. Petersen AG, Eiskjær S, Kaspersen J (2012) Dose optimisation for intraoperative cone-beam flat-detector CT in paediatric spinal surgery. Pediatr Radiol 42(8):965–973. doi:10.007/s00247-012-2398-0

    Article  PubMed  PubMed Central  Google Scholar 

  8. Faulkner K, Broadhead DA, Harrison RM (1999) Patient dosimetry measurement methods. Appl Radiat Isot 50:113–123

    Article  PubMed  CAS  Google Scholar 

  9. Rivera T (2012) Thermoluminescence in medical dosimetry. Appl Radiat Isot 71:30–34. doi:10.1016/j.apradiso.2012.04.018

    Article  PubMed  CAS  Google Scholar 

  10. Mancini JG, Ferrandino MN (2010) The impact of new methods of imaging on radiation dosage delivered to patients. Curr Opin Urol 20(2):163–168. doi:10.1097/MOU.0b013e3283353bd9

    Article  PubMed  Google Scholar 

  11. Schegerer A, Weisser U, Lechel U, Fink C, Ritter M, Brix G. (2012) Comparison of image quality and radiation dose between Dyna-CT and conventional multislice CT. Abstract, 43rd Convention of the German Society of Medical Physics, page 254–256. http://www.conventus.de/fileadmin/media/2012/dgmp/Abstractband/DGMP

  12. Türk C, Knoll T, Petrik A, Sarica K, Straub M, Seitz C (2012) Guidelines on Urolithiasis. In: EAU Guidelines, edition presented at the 28th EAU Annual Congress, Milan

  13. Lipkin ME, Preminger GM (2013) Imaging techniques for stone disease and methods for reducing radiation exposure. Urol Clin North Am 40(1):47–57. doi:10.1016/j.ucl.2012.09.008

    Article  PubMed  Google Scholar 

  14. Mancini JG, Raymundo EM, Lipkin M, Zilberman D, Yong D, Bañez LL, Miller MJ, Preminger GM, Ferrandino MN (2010) Factors affecting patient radiation exposure during percutaneous nephrolithotomy. J Urol 184(6):2373–2377. doi:10.1016/j.juro.2010.08.033

    Article  PubMed  Google Scholar 

  15. Lipkin ME, Wang AJ, Toncheva G, Ferrandino MN, Yoshizumi TT, Preminger GM (2012) Determination of patient radiation dose during ureteroscopic treatment of urolithiasis using a validated model. J Urol 187(3):920–924. doi:10.1016/j.juro.2011.10.159

    Article  PubMed  Google Scholar 

  16. Lipkin ME, Mancini JG, Toncheva G, Wang AJ, Anderson-Evans C, Simmons WN, Ferrandino MN, Yoshizumi TT, Preminger GM (2012) Organ-specific radiation dose rates and effective dose rates during percutaneous nephrolithotomy. J Endourol 26(5):439–443. doi:10.1089/end 2011.0178

    Article  PubMed  Google Scholar 

  17. Ritter M, Siegel F, Krombach P, Martinschek A, Weiss Ch, Häcker A, Pelzer AE (2013) Influence of surgeon’s experience on fluoroscopy time during endourological interventions. World J Urol 31(1):183–187. doi:10.1007/s00345-012-0923-0

    Article  PubMed  CAS  Google Scholar 

  18. Ritter M, Krombach P, Martinschek A, Siegel FP, Schmitt M, Weiss Ch, Häcker A, Pelzer AE (2012) Radiation exposure during endourologic procedures using over-the-table fluoroscopy sources. J Endourol 26(1):47–51. doi:10.1089/end 2011.0333

    Article  PubMed  Google Scholar 

  19. Ghani KR, Patel U, Anson K (2009) Computed tomography for percutaneous renal access. J Endourol 23(10):1633–1639. doi:10.1089/end.2009.1529

    Article  PubMed  Google Scholar 

  20. Thanos L, Mylona S, Stroumpouli E et al (2006) Percutaneous CT-guided nephrostomy: a safe and quick alternative mehod in management of obstructive and nonobstructive uropathy. J Endourol 20(7):486–490

    Article  PubMed  CAS  Google Scholar 

  21. Kraus MD, Dehner Ch, Riepl Ch, Schöll H, Gebhard F (2012) A novel method of image-based navigation in fracture surgery. Arch Orthop Trauma Surg 132(6):741–750. doi:10.007/s00402-012-1271-1

    Article  PubMed  Google Scholar 

  22. Nozaki T, Fujiuchi Y, Komiya A, Fuse H (2013) Efficacy of DynaCT for surgical navigation during complex laparoscopic surgery: an initial experience. Surg Endosc 27(3):903–909. doi:10.1007/s00464-012-2531-x

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

For the development of the endourological intervention table, a cooperation contract exists with Siemens Healthcare Sector, Erlangen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-C. Rassweiler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rassweiler, MC., Banckwitz, R., Koehler, C. et al. New developed urological protocols for the Uro Dyna-CT reduce radiation exposure of endourological patients below the levels of the low dose standard CT scans. World J Urol 32, 1213–1218 (2014). https://doi.org/10.1007/s00345-013-1195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-013-1195-z

Keywords

Navigation