Skip to main content

Advertisement

Log in

To combine or not combine: the role of radiotherapy and targeted agents in the treatment for renal cell carcinoma

  • Invited Review
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Introduction

Renal cell carcinoma is counted among the most resistant tumors to chemotherapy and radiotherapy, respectively. However, therapeutic options expanded since the introduction of molecular agents, targeting specific pathways such as the vascular endothelial growth factor (VEGF)-α, the VEGF receptor (VEGFR), or the mammalian target of rapamycin (mTOR) pathway. These new agents almost doubled the time to tumor progression and in some trials even improved overall survival. Against this background, the role of local treatment strategies in metastasized or inoperable primary renal cell carcinoma has to be redefined. With the onset of new technical developments in radiotherapy and the possibility to precisely deliver higher doses per fraction, encouraging response and control rates have been reported for kidney cancer, supporting a possible role for irradiation in this setting. This overview summarizes the preclinical data and clinical experiences of modern radiotherapy with focus on possible synergies and toxicities when combined with molecular targeted agents.

Methods

The available literature on preclinical and clinical data comprising prospective trials, retrospective analyses and case reports was reviewed.

Conclusion

With the recent developments in stereotactic and image-guided radiotherapy, encouraging data concerning local control in the treatment for metastasized renal cell carcinoma have been generated and are therefore recommended whenever possible. It seems that with these high- precision irradiation schedules, the combination with targeted agents is feasible with no increase in severe adverse events. Nevertheless, the addition of molecular targeted drugs to radiotherapy outside of approved regimens or clinical trials warrants careful consideration for every single case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Coppin C, Kollmannsberger C, Le L et al (2011) Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials. BJU Int 108:1556–1563

    Article  CAS  PubMed  Google Scholar 

  2. Balagamwala EH, Angelov L, Koyfman SA et al (2012) Single-fraction stereotactic body radiotherapy for spinal metastases from renal cell carcinoma. J Neurosurg Spine 17:556–564

    Article  PubMed  Google Scholar 

  3. Ranck MC, Golden DW, Corbin KS, et al. (2012) Stereotactic body radiotherapy for the treatment of oligometastatic renal cell carcinoma. Am J Clin Oncol [Epub ahead in print]

  4. Zelefsky MJ, Greco C, Motzer R et al (2012) Tumor control outcomes after hypofractionated and single-dose stereotactic image-guided intensity-modulated radiotherapy for extracranial metastases from renal cell carcinoma. Int J Radiat Oncol Biol Phys 82:1744–1748

    Article  PubMed  Google Scholar 

  5. Deschavanne PJ, Fertil B (1996) A review of human cell radiosensitivity in vitro. Int J Radiat Oncol Biol Phys 34:251–266

    Article  CAS  PubMed  Google Scholar 

  6. Onufrey V, Mohiuddin M (1985) Radiation therapy in the treatment of metastatic renal cell carcinoma. Int J Radiat Oncol Biol Phys 11:2007–2009

    Article  CAS  PubMed  Google Scholar 

  7. DiBiase SJ, Valicenti RK, Schultz D et al (1997) Palliative irradiation for focally symptomatic metastatic renal cell carcinoma: support for dose escalation based on a biological model. J Urol 158:746–749

    Article  CAS  PubMed  Google Scholar 

  8. Kano H, Iyer A, Kondziolka D et al (2011) Outcome predictors of gamma knife radiosurgery for renal cell carcinoma metastases. Neurosurgery 69:1232–1239

    Article  PubMed  Google Scholar 

  9. Mori Y, Kondziolka D, Flickinger JC et al (1998) Stereotactic radiosurgery for brain metastasis from renal cell carcinoma. Cancer 83:344–353

    Article  CAS  PubMed  Google Scholar 

  10. Shuto T, Inomori S, Fujino H et al (2006) Gamma knife surgery for metastatic brain tumors from renal cell carcinoma. J Neurosurg 105:555–560

    Article  PubMed  Google Scholar 

  11. Walsh L, Stanfield JL, Cho LC et al (2006) Efficacy of ablative high-dose-per-fraction radiation for implanted human renal cell cancer in a nude mouse model. Eur Urol 50:795–800 (discussion 800)

    Article  PubMed  Google Scholar 

  12. Park C, Papiez L, Zhang S et al (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70:847–852

    Article  PubMed  Google Scholar 

  13. Stinauer MA, Kavanagh BD, Schefter TE et al (2011) Stereotactic body radiation therapy for melanoma and renal cell carcinoma: impact of single fraction equivalent dose on local control. Radiat Oncol 6:34

    Article  PubMed Central  PubMed  Google Scholar 

  14. Fuks Z, Kolesnick R (2005) Engaging the vascular component of the tumor response. Cancer Cell 8:89–91

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Barros M, Paris F, Cordon-Cardo C et al (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159

    Article  CAS  PubMed  Google Scholar 

  16. Kolesnick R, Fuks Z (2003) Radiation and ceramide-induced apoptosis. Oncogene 22:5897–5906

    Article  CAS  PubMed  Google Scholar 

  17. Moeller BJ, Cao Y, Li CY et al (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5:429–441

    Article  CAS  PubMed  Google Scholar 

  18. Moeller BJ, Cao Y, Vujaskovic Z et al (2004) The relationship between hypoxia and angiogenesis. Semin Radiat Oncol 14:215–221

    Article  PubMed  Google Scholar 

  19. Moeller BJ, Dreher MR, Rabbani ZN et al (2005) Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 8:99–110

    Article  CAS  PubMed  Google Scholar 

  20. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  21. Lee CG, Heijn M, di Tomaso E et al (2000) Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60:5565–5570

    CAS  PubMed  Google Scholar 

  22. Mazeron R, Anderson B, Supiot S et al (2011) Current state of knowledge regarding the use of antiangiogenic agents with radiation therapy. Cancer Treat Rev 37:476–486

    CAS  PubMed  Google Scholar 

  23. Gorski DH, Beckett MA, Jaskowiak NT et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59:3374–3378

    CAS  PubMed  Google Scholar 

  24. Huber PE, Bischof M, Jenne J et al (2005) Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res 65:3643–3655

    Article  CAS  PubMed  Google Scholar 

  25. Kozin SV, Boucher Y, Hicklin DJ et al (2001) Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res 61:39–44

    CAS  PubMed  Google Scholar 

  26. Murata R, Nishimura Y, Hiraoka M (1997) An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int J Radiat Oncol Biol Phys 37:1107–1113

    Article  CAS  PubMed  Google Scholar 

  27. Niyazi M, Maihoefer C, Krause M et al (2011) Radiotherapy and “new” drugs-new side effects? Radiat Oncol 6:177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Crane CH, Eng C, Feig BW et al (2010) Phase II trial of neoadjuvant bevacizumab, capecitabine, and radiotherapy for locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 76:824–830

    Article  CAS  PubMed  Google Scholar 

  29. Crane CH, Ellis LM, Abbruzzese JL et al (2006) Phase I trial evaluating the safety of bevacizumab with concurrent radiotherapy and capecitabine in locally advanced pancreatic cancer. J Clin Oncol 24:1145–1151

    Article  CAS  PubMed  Google Scholar 

  30. Crane CH, Winter K, Regine WF et al (2009) Phase II study of bevacizumab with concurrent capecitabine and radiation followed by maintenance gemcitabine and bevacizumab for locally advanced pancreatic cancer: Radiation Therapy Oncology Group RTOG 0411. J Clin Oncol 27:4096–4102

    Article  CAS  PubMed  Google Scholar 

  31. Willett CG, Duda DG, Ancukiewicz M et al (2010) A safety and survival analysis of neoadjuvant bevacizumab with standard chemoradiation in a phase I/II study compared with standard chemoradiation in locally advanced rectal cancer. Oncologist 15:845–851

    Article  CAS  PubMed  Google Scholar 

  32. Willett CG, Duda DG, di Tomaso E et al (2009) Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol 27:3020–3026

    Article  CAS  PubMed  Google Scholar 

  33. Koukourakis MI, Giatromanolaki A, Sheldon H et al (2009) Phase I/II trial of bevacizumab and radiotherapy for locally advanced inoperable colorectal cancer: vasculature-independent radiosensitizing effect of bevacizumab. Clin Cancer Res 15:7069–7076

    Article  CAS  PubMed  Google Scholar 

  34. Koukourakis MI, Giatromanolaki A, Tsoutsou P et al (2011) Bevacizumab, capecitabine, amifostine, and preoperative hypofractionated accelerated radiotherapy (HypoArc) for rectal cancer: a phase II study. Int J Radiat Oncol Biol Phys 80:492–498

    Article  CAS  PubMed  Google Scholar 

  35. Czito BG, Bendell JC, Willett CG et al (2007) Bevacizumab, oxaliplatin, and capecitabine with radiation therapy in rectal cancer: phase I trial results. Int J Radiat Oncol Biol Phys 68:472–478

    Article  CAS  PubMed  Google Scholar 

  36. Goyal S, Rao MS, Khan A et al (2011) Evaluation of acute locoregional toxicity in patients with breast cancer treated with adjuvant radiotherapy in combination with bevacizumab. Int J Radiat Oncol Biol Phys 79:408–413

    Article  CAS  PubMed  Google Scholar 

  37. Vredenburgh JJ, Desjardins A, Kirkpatrick JP et al (2012) Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 82:58–66

    Article  CAS  PubMed  Google Scholar 

  38. Vredenburgh JJ, Desjardins A, Reardon DA et al (2011) The addition of bevacizumab to standard radiation therapy and temozolomide followed by bevacizumab, temozolomide, and irinotecan for newly diagnosed glioblastoma. Clin Cancer Res 17:4119–4124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lai A, Tran A, Nghiemphu PL et al (2011) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 29:142–148

    Article  CAS  PubMed  Google Scholar 

  40. Narayana A, Gruber D, Kunnakkat S et al (2012) A clinical trial of bevacizumab, temozolomide, and radiation for newly diagnosed glioblastoma. J Neurosurg 116:341–345

    Article  CAS  PubMed  Google Scholar 

  41. Gutin PH, Iwamoto FM, Beal K et al (2009) Safety and efficacy of bevacizumab with hypofractionated stereotactic irradiation for recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 75:156–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Seiwert TY, Haraf DJ, Cohen EE et al (2008) Phase I study of bevacizumab added to fluorouracil- and hydroxyurea-based concomitant chemoradiotherapy for poor-prognosis head and neck cancer. J Clin Oncol 26:1732–1741

    Article  CAS  PubMed  Google Scholar 

  43. Spigel DR, Greco FA, Zubkus JD et al (2009) Phase II trial of irinotecan, carboplatin, and bevacizumab in the treatment of patients with extensive-stage small-cell lung cancer. J Thorac Oncol 4:1555–1560

    Article  PubMed  Google Scholar 

  44. Kao J, Packer S, Vu HL et al (2009) Phase 1 study of concurrent sunitinib and image-guided radiotherapy followed by maintenance sunitinib for patients with oligometastases: acute toxicity and preliminary response. Cancer 115:3571–3580

    Article  CAS  PubMed  Google Scholar 

  45. Wuthrick EJ, Kamrava M, Curran WJ Jr et al (2011) A phase 1b trial of the combination of the antiangiogenic agent sunitinib and radiation therapy for patients with primary and metastatic central nervous system malignancies. Cancer 117:5548–5559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Tong CC, Ko EC, Sung MW et al (2012) Phase II trial of concurrent sunitinib and image-guided radiotherapy for oligometastases. PLoS One 7:e36979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Choi YR, Han HS, Lee OJ et al (2012) Metastatic renal cell carcinoma in a supraclavicular lymph node with no known primary: a case report. Cancer Res Treat 44:215–218

    Article  PubMed Central  PubMed  Google Scholar 

  48. Chung C, Dawson LA, Joshua AM et al (2010) Radiation recall dermatitis triggered by multi-targeted tyrosine kinase inhibitors: sunitinib and sorafenib. Anticancer Drugs 21:206–209

    Article  CAS  PubMed  Google Scholar 

  49. Cochran DC, Chan MD, Aklilu M et al (2012) The effect of targeted agents on outcomes in patients with brain metastases from renal cell carcinoma treated with Gamma Knife surgery. J Neurosurg 116:978–983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Gay HA, Cavalieri R, Allison RR et al (2007) Complete response in a cutaneous facial metastatic nodule from renal cell carcinoma after hypofractionated radiotherapy. Dermatol Online J 13:6

    PubMed  Google Scholar 

  51. Inoue T, Kinoshita H, Komai Y et al (2012) Two cases of gastrointestinal perforation after radiotherapy in patients receiving tyrosine kinase inhibitor for advanced renal cell carcinoma. World J Surg Oncol 10:167

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kasibhatla M, Steinberg P, Meyer J et al (2007) Radiation therapy and sorafenib: clinical data and rationale for the combination in metastatic renal cell carcinoma. Clin Genitourin Cancer 5:291–294

    Article  PubMed  Google Scholar 

  53. Kirova YM, Servois V, Chargari C et al (2012) Further developments for improving response and tolerance to irradiation for advanced renal cancer: concurrent (mTOR) inhibitor RAD001 and helical tomotherapy. Invest New Drugs 30:1241–1243

    Article  PubMed  Google Scholar 

  54. Kusuda YHM, Terakawa T, Furukawa J, Muramaki M, Fujisawa M (2011) Treatment of brain metastases from renal cell carcinoma with sunitinib and radiotherapy: our experience and review of the literature. Int J Urol

  55. Peters NA, Richel DJ, Verhoeff JJ et al (2008) Bowel perforation after radiotherapy in a patient receiving sorafenib. J Clin Oncol 26:2405–2406

    Article  PubMed  Google Scholar 

  56. Pouessel D, Culine S (2008) High frequency of intracerebral hemorrhage in metastatic renal carcinoma patients with brain metastases treated with tyrosine kinase inhibitors targeting the vascular endothelial growth factor receptor. Eur Urol 53:376–381

    Article  CAS  PubMed  Google Scholar 

  57. Seidel C, Janssen S, Karstens JH et al (2010) Recall pneumonitis during systemic treatment with sunitinib. Ann Oncol 21:2119–2120

    Article  CAS  PubMed  Google Scholar 

  58. Staehler M, Haseke N, Nuhn P et al (2011) Simultaneous anti-angiogenic therapy and single-fraction radiosurgery in clinically relevant metastases from renal cell carcinoma. BJU Int 108:673–678

    PubMed  Google Scholar 

  59. Staehler M, Haseke N, Stadler T et al (2012) Feasibility and effects of high-dose hypofractionated radiation therapy and simultaneous multi-kinase inhibition with sunitinib in progressive metastatic renal cell cancer. Urol Oncol 30:290–293

    Article  CAS  PubMed  Google Scholar 

  60. Syrios J, Kechagias G, Tsavaris N (2012) Prolonged survival after sequential multimodal treatment in metastatic renal cell carcinoma: two case reports and a review of the literature. J Med Case Rep 6:303

    Article  PubMed Central  PubMed  Google Scholar 

  61. Taussky D, Soulieres D (2009) Hypofractionated radiotherapy with concomitant sunitinib—is there a radiosensitizing effect? Can J Urol 16:4599–4600

    PubMed  Google Scholar 

  62. Venton G, Ducournau A, Gross E et al (2012) Complete pathological response after sequential therapy with sunitinib and radiotherapy for metastatic clear cell renal carcinoma. Anticancer Res 32:701–705

    CAS  PubMed  Google Scholar 

  63. Verma J, Jonasch E, Allen PK, et al. (2012) The impact of tyrosine kinase inhibitors on the multimodality treatment of brain metastases from renal cell carcinoma. Am J Clin Oncol

  64. Basille D, Andrejak M, Bentayeb H et al (2010) Bronchial fistula associated with sunitinib in a patient previously treated with radiation therapy. Ann Pharmacother 44:383–386

    Article  PubMed  Google Scholar 

  65. Ponsky LE, Crownover RL, Rosen MJ et al (2003) Initial evaluation of Cyberknife technology for extracorporeal renal tissue ablation. Urology 61:498–501

    Article  PubMed  Google Scholar 

  66. Beitler JJ, Makara D, Silverman P et al (2004) Definitive, high-dose-per-fraction, conformal, stereotactic external radiation for renal cell carcinoma. Am J Clin Oncol 27:646–648

    Article  PubMed  Google Scholar 

  67. Wersall PJ, Blomgren H, Lax I et al (2005) Extracranial stereotactic radiotherapy for primary and metastatic renal cell carcinoma. Radiother Oncol 77:88–95

    Article  PubMed  Google Scholar 

  68. Svedman C, Sandstrom P, Pisa P et al (2006) A prospective Phase II trial of using extracranial stereotactic radiotherapy in primary and metastatic renal cell carcinoma. Acta Oncol 45:870–875

    Article  PubMed  Google Scholar 

  69. Ponsky LE, Mahadevan A, Gill IS et al (2007) Renal radiosurgery: initial clinical experience with histological evaluation. Surg Innov 14:265–269

    Article  PubMed  Google Scholar 

  70. Teh B, Bloch C, Galli-Guevara M et al (2007) The treatment of primary and metastatic renal cell carcinoma (RCC) with image-guided stereotactic body radiation therapy (SBRT). Biomed Imag Interv J 3:e6

    Google Scholar 

  71. Svedman C, Karlsson K, Rutkowska E et al (2008) Stereotactic body radiotherapy of primary and metastatic renal lesions for patients with only one functioning kidney. Acta Oncol 47:1578–1583

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

C. Weiss received honoraria for lectures from Roche, Lilliy, and Merck Serono. The other authors certify that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, C., Schulze, B., Ottinger, A. et al. To combine or not combine: the role of radiotherapy and targeted agents in the treatment for renal cell carcinoma. World J Urol 32, 59–67 (2014). https://doi.org/10.1007/s00345-013-1068-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-013-1068-5

Keywords

Navigation