World Journal of Urology

, Volume 31, Issue 2, pp 345–350 | Cite as

Altered expression of farnesyl pyrophosphate synthase in prostate cancer: evidence for a role of the mevalonate pathway in disease progression?

  • Tilman Todenhöfer
  • Jörg Hennenlotter
  • Ursula Kühs
  • Valentina Gerber
  • Georgios Gakis
  • Ulrich Vogel
  • Stefan Aufderklamm
  • Axel Merseburger
  • Judith Knapp
  • Arnulf Stenzl
  • Christian Schwentner
Original Article



Preclinical studies demonstrated effects of drugs inhibiting the mevalonate pathway including nitrogen-containing bisphosphonates (N-BPs) and statins on tumor growth and progression. The exact role of this pathway in prostate cancer (PC) has not been identified yet. Herein, we evaluate the expression of farnesyl pyrophosphate synthase (FPPS), the key enzyme of the mevalonate pathway, in PC.

Patients and methods

Prostate cancer (PC) and benign prostate tissue of 114 men who underwent radical prostatectomy were constructed to a tissue microarray. Immunohistochemical staining of FPPS was quantified by the Remmele/Stegner immunoreactivity-score. Patients’ clinical follow-up was assessed. IRS was correlated to pathological and clinical data. The impact of FPPS expression on clinical course was assessed univariate and multivariate.


Mean IRS in PC and benign tissue was 5.7 (95% CI 5.0–6.5) and 2.6 (2.1–3.0, p < 0.0001). Mean IRS in PC tissue of patients with organ-confined and locally advanced disease (pT ≥ 3) was 5.09 (4.22–5.96) and 6.87 (5.57–8.17, p = 0.035). IRS of PC tissue significantly correlated with Gleason score (p = 0.03). Patients with PC tissue IRS >3 showed shorter recurrence-free survival compared to the remaining (p = 0.01). Increased FPPS expression is an independent risk factor for early biochemical recurrence (p = 0.032).


This is the first study on FPPS in PC specimens. The association of FPPS with established histopathological risk parameters and biochemical recurrence implicates a contribution of the mevalonate pathway to PC progression. Further functional analysis is required to explore the role of this pathway in PC and to investigate whether FPPS expression affects the response of PC cells to N-BPs.


Prostate cancer Bisphosphonates Farnesyl pyrophosphate synthase Zoledronic acid Mevalonate pathway 



This work received external funding (SZOM-002-grant; Novartis Institutes for BioMedical Research). We thank Hannes Schramm for graphical assistance.

Conflict of interest



  1. 1.
    Roy M, Kung HJ, Ghosh PM (2011) Statins and prostate cancer: role of cholesterol inhibition versus prevention of small GTP-binding proteins. Am J Cancer Res 1(4):542–561PubMedGoogle Scholar
  2. 2.
    Russell RG (2011) Bisphosphonates: the first 40 years. Bone 49(1):2–19. doi: 10.1016/j.bone.2011.04.022 PubMedCrossRefGoogle Scholar
  3. 3.
    Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13(4):581–589. doi: 10.1359/jbmr.1998.13.4.581 PubMedCrossRefGoogle Scholar
  4. 4.
    Clezardin P (2011) Bisphosphonates’ antitumor activity: an unravelled side of a multifaceted drug class. Bone 48(1):71–79. doi: 10.1016/j.bone.2010.07.016 PubMedCrossRefGoogle Scholar
  5. 5.
    Farley SJ (2010) Prostate cancer: time to trial statins? Nat Rev Urol 7(7):359. doi: 10.1038/nrurol.2010.85 PubMedCrossRefGoogle Scholar
  6. 6.
    Saylor PJ, Lee RJ, Smith MR (2011) Emerging therapies to prevent skeletal morbidity in men with prostate cancer. J Clin Oncol 29(27):3705–3714. doi: 10.1200/JCO.2010.34.4994 PubMedCrossRefGoogle Scholar
  7. 7.
    Coxon JP, Oades GM, Kirby RS, Colston KW (2004) Zoledronic acid induces apoptosis and inhibits adhesion to mineralized matrix in prostate cancer cells via inhibition of protein prenylation. BJU Int 94(1):164–170. doi: 10.1111/j.1464-4096.2004.04831.xBJU4831 PubMedCrossRefGoogle Scholar
  8. 8.
    Jacobs EJ, Rodriguez C, Bain EB, Wang Y, Thun MJ, Calle EE (2007) Cholesterol-lowering drugs and advanced prostate cancer incidence in a large US cohort. Cancer Epidemiol Biomarkers Prev 16(11):2213–2217. doi: 10.1158/1055-9965.EPI-07-0448 PubMedCrossRefGoogle Scholar
  9. 9.
    Hamilton RJ, Banez LL, Aronson WJ, Terris MK, Platz EA, Kane CJ, Presti JC Jr, Amling CL, Freedland SJ (2010) Statin medication use and the risk of biochemical recurrence after radical prostatectomy: results from the shared equal access regional cancer hospital (SEARCH) database. Cancer 116(14):3389–3398. doi: 10.1002/cncr.25308 PubMedCrossRefGoogle Scholar
  10. 10.
    Merseburger AS, Anastasiadis AG, Hennenlotter J, Schilling D, Simon P, Machtens SA, Serth J, Stenzl A, Kuczyk MA (2006) Tissue microarrays: applications in urological cancer research. World J Urol 24(5):579–584. doi: 10.1007/s00345-006-0103-1 PubMedCrossRefGoogle Scholar
  11. 11.
    Remmele W, Stegner HE (1987) Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 8(3):138–140PubMedGoogle Scholar
  12. 12.
    Mottet N, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, Schmid HP, Van der Kwast T, Wiegel T, Zattoni F, Heidenreich A (2011) EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 59(4):572–583. doi: 10.1016/j.eururo.2011.01.025 PubMedCrossRefGoogle Scholar
  13. 13.
    Gnant M, Mlineritsch B, Schippinger W, Luschin-Ebengreuth G, Postlberger S, Menzel C, Jakesz R, Seifert M, Hubalek M, Bjelic-Radisic V, Samonigg H, Tausch C, Eidtmann H, Steger G, Kwasny W, Dubsky P, Fridrik M, Fitzal F, Stierer M, Rucklinger E, Greil R, Marth C (2009) Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med 360(7):679–691. doi: 10.1056/NEJMoa0806285 PubMedCrossRefGoogle Scholar
  14. 14.
    Morgan C, Lewis PD, Jones RM, Bertelli G, Thomas GA, Leonard RC (2007) The in vitro anti-tumour activity of zoledronic acid and docetaxel at clinically achievable concentrations in prostate cancer. Acta Oncol 46(5):669–677. doi: 10.1080/02841860600996447 PubMedCrossRefGoogle Scholar
  15. 15.
    Neville-Webbe HL, Rostami-Hodjegan A, Evans CA, Coleman RE, Holen I (2005) Sequence- and schedule-dependent enhancement of zoledronic acid induced apoptosis by doxorubicin in breast and prostate cancer cells. Int J Cancer 113(3):364–371. doi: 10.1002/ijc.20602 PubMedCrossRefGoogle Scholar
  16. 16.
    Fournier P, Boissier S, Filleur S, Guglielmi J, Cabon F, Colombel M, Clezardin P (2002) Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 62(22):6538–6544PubMedGoogle Scholar
  17. 17.
    Sarker D, Reid AH, Yap TA, de Bono JS (2009) Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res 15(15):4799–4805. doi: 10.1158/1078-0432.CCR-08-0125 PubMedCrossRefGoogle Scholar
  18. 18.
    Lin JF, Lin YC, Lin YH, Tsai TF, Chou KY, Chen HE, Hwang TI (2011) Zoledronic acid induces autophagic cell death in human prostate cancer cells. J Urol 185(4):1490–1496. doi: 10.1016/j.juro.2010.11.045 PubMedCrossRefGoogle Scholar
  19. 19.
    Marra M, Salzano G, Leonetti C, Tassone P, Scarsella M, Zappavigna S, Calimeri T, Franco R, Liguori G, Cigliana G, Ascani R, La Rotonda MI, Abbruzzese A, Tagliaferri P, Caraglia M, De Rosa G (2011) Nanotechnologies to use bisphosphonates as potent anticancer agents: the effects of zoledronic acid encapsulated into liposomes. Nanomedicine. doi: 10.1016/j.nano.2011.03.004 PubMedGoogle Scholar
  20. 20.
    Gonyeau MJ, Yuen DW (2010) A clinical review of statins and cancer: helpful or harmful? Pharmacotherapy 30(2):177–194. doi: 10.1592/phco.30.2.177 PubMedCrossRefGoogle Scholar
  21. 21.
    Boudreau DM, Yu O, Buist DS, Miglioretti DL (2008) Statin use and prostate cancer risk in a large population-based setting. Cancer Causes Control 19(7):767–774. doi: 10.1007/s10552-008-9139-4 PubMedCrossRefGoogle Scholar
  22. 22.
    Soto DE, Daignault S, Sandler HM, Ray ME (2009) No effect of statins on biochemical outcomes after radiotherapy for localized prostate cancer. Urology 73(1):158–162. doi: 10.1016/j.urology.2008.02.055 PubMedCrossRefGoogle Scholar
  23. 23.
    Friedman GD, Flick ED, Udaltsova N, Chan J, Quesenberry CP Jr, Habel LA (2008) Screening statins for possible carcinogenic risk: up to 9 years of follow-up of 361,859 recipients. Pharmacoepidemiol Drug Saf 17(1):27–36. doi: 10.1002/pds.1507 PubMedCrossRefGoogle Scholar
  24. 24.
    Bonovas S, Filioussi K, Sitaras NM (2008) Statin use and the risk of prostate cancer: a metaanalysis of 6 randomized clinical trials and 13 observational studies. Int J Cancer 123(4):899–904. doi: 10.1002/ijc.23550 PubMedCrossRefGoogle Scholar
  25. 25.
    Notarnicola M, Messa C, Cavallini A, Bifulco M, Tecce MF, Eletto D, Di Leo A, Montemurro S, Laezza C, Caruso MG (2004) Higher farnesyl diphosphate synthase activity in human colorectal cancer inhibition of cellular apoptosis. Oncology 67(5–6):351–358. doi: 10.1159/000082918 PubMedCrossRefGoogle Scholar
  26. 26.
    Woo IS, Eun SY, Kim HJ, Kang ES, Lee JH, Chang KC, Kim JH, Hong SC, Seo HG (2010) Farnesyl diphosphate synthase attenuates paclitaxel-induced apoptotic cell death in human glioblastoma U87MG cells. Neurosci Lett 474(2):115–120. doi: 10.1016/j.neulet.2010.03.021 PubMedCrossRefGoogle Scholar
  27. 27.
    Jiang F, Yang L, Cai X, Cyriac J, Shechter I, Wang Z (2001) Farnesyl diphosphate synthase is abundantly expressed and regulated by androgen in rat prostatic epithelial cells. J Steroid Biochem Mol Biol 78(2):123–130. doi: S0960-0760(01)00086-3 PubMedCrossRefGoogle Scholar
  28. 28.
    Li J, Herold MJ, Kimmel B, Muller I, Rincon-Orozco B, Kunzmann V, Herrmann T (2009) Reduced expression of the mevalonate pathway enzyme farnesyl pyrophosphate synthase unveils recognition of tumor cells by Vγ9Vδ2 T cells. J Immunol 182(12):8118–8124. doi: 10.4049/jimmunol.0900101 PubMedCrossRefGoogle Scholar
  29. 29.
    Riddle MK, Lockhart AC, Sorscher SM (2010) Complete radiographic response to zoledronic acid therapy in a patient with bony metastatic urothelial carcinoma: a case report. World J Oncol 1(1):208–209Google Scholar
  30. 30.
    Sorscher SM, Lockhart AC (2011) Ras inhibition and the survival benefit favoring zoledronic acid compared with denosumab in patients with multiple myeloma. J Clin Oncol 29(19):2735–2736. doi: 10.1200/JCO.2011.35.8333; Author reply 2736–2738PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Tilman Todenhöfer
    • 1
  • Jörg Hennenlotter
    • 1
  • Ursula Kühs
    • 1
  • Valentina Gerber
    • 1
  • Georgios Gakis
    • 1
  • Ulrich Vogel
    • 2
  • Stefan Aufderklamm
    • 1
  • Axel Merseburger
    • 3
  • Judith Knapp
    • 4
  • Arnulf Stenzl
    • 1
  • Christian Schwentner
    • 1
    • 5
  1. 1.Department of UrologyUniversity Hospital TübingenTübingenGermany
  2. 2.Department of PathologyUniversity Hospital TübingenTübingenGermany
  3. 3.Department of UrologyMedical SchoolHannoverGermany
  4. 4.Department of UrologyDiakonieklinikumStuttgartGermany
  5. 5.Department of UrologyEberhard–Karls UniversityTübingenGermany

Personalised recommendations