Skip to main content
Log in

Mutational analysis of proto-oncogene Dbl on Xq27 in testicular germ cell tumors reveals a rare SNP in a patient with bilateral undescended testis

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Objectives

An abundance of X chromosomes in testicular germ cell tumors (TGCTs), and a candidate TGCTs susceptibility gene (TGCT1) on Xq27 highlight the potential involvement of X chromosomes in TGCT pathogenesis. However, the TGCT1 on Xq27 has so far not been identified. We hypothesized that a somatic mutation of dbl oncogene on Xq27 may play a role for the development of TGCTs.

Methods

We have screened 41 TGCT tissues for dbl mutations using single-strand conformation polymorphism (SSCP) analysis. These tissues are composed of 25 seminomatous TGCTs tissues and 16 non-seminomatous TGCTs tissues, including two cases with a rhabdomyosarcoma component.

Results

Somatic mutations were not detected in the 25 exons of dbl in these TGCTs. However, we found a rare single nucleotide polymorphism (SNP) (T to C nucleotide change) within intron 22 in one out of the 41 TGCTs cases (2%). Furthermore, the sample with the rare SNP was identified as the sole TGCTs case associated with bilateral undescended testis in our series.

Conclusions

Our results indicate that proto-oncogene dbl is not a major target for sporadic TGCTs. However, the rare SNP in dbl may affect the susceptibility to undescended testis. Determining the frequency of this SNP in patients with various types of undescended testis in different ethnic groups is a warranted study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dieckmann KP, Skakkebæk NE (1999) Carcinoma in situ of the testis: review of biological and clinical features. Int J Cancer 83:815–822. doi:10.1002/(SICI)1097-0215(19991210)83:6<815::AID-IJC21>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  2. Lykkesfeldt G, Høyer H, Lykkesfeldt AE et al (1983) Steroid sulphatase deficiency associated with testis cancer. Lancet 2:1456. doi:10.1016/S0140-6736(83)90801-2

    Article  CAS  PubMed  Google Scholar 

  3. Hasle H, Mellemgaard A, Nielsen J et al (1995) Cancer incidence in men with Klinefelter syndrome. Br J Cancer 71:416–420

    CAS  PubMed  Google Scholar 

  4. Sandberg AA, Meloni AM, Suijkerbuijk RF (1996) Reviews of chromosome studies in urological tumors. III. Cytogenetics and genes in testicular tumors. J Urol 155:1531–1556. doi:10.1016/S0022-5347(01)66124-X

    Article  CAS  PubMed  Google Scholar 

  5. Kawakami T, Okamoto K, Sugihara H et al (2003) The roles of supernumerical X chromosomes and XIST expression in testicular germ cell tumors. J Urol 169:1546–1552. doi:10.1097/01.ju.0000044927.23323.5a

    Article  PubMed  Google Scholar 

  6. Mayer F, Stoop H, Sen S et al (2003) Aneuploidy of human testicular germ cell tumors is associated with amplification of centrosomes. Oncogene 22:3859–3866. doi:10.1038/sj.onc.1206469

    Article  CAS  PubMed  Google Scholar 

  7. Rapley EA, Crockford GP, Teare D et al (2000) Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat Genet 24:197–200. doi:10.1038/72877

    Article  CAS  PubMed  Google Scholar 

  8. Looijenga LH, Gillis AJ, van Gurp RJ et al (1997) X inactivation in human testicular tumors. XIST expression and androgen receptor methylation status. Am J Pathol 151:581–590

    CAS  PubMed  Google Scholar 

  9. Richler C, Soreq H, Wahrman J (1992) X inactivation in mammalian testis is correlated with inactive X-specific transcription. Nat Genet 2:192–195. doi:10.1038/ng1192-192

    Article  CAS  PubMed  Google Scholar 

  10. Salido EC, Yen PH, Mohandas TK et al (1992) Expression of the X-inactivation-associated gene XIST during spermatogenesis. Nat Genet 2:196–199. doi:10.1038/ng1192-196

    Article  CAS  PubMed  Google Scholar 

  11. Kawakami T, Okamoto K, Ogawa O et al (2004) XIST unmethylated DNA fragments in male-derived plasma as a tumour marker for testicular cancer. Lancet 363:40–42. doi:10.1016/S0140-6736(03)15170-7

    Article  CAS  PubMed  Google Scholar 

  12. Zhang C, Kawakami T, Okada Y et al (2005) Distinctive epigenetic phenotype of cancer testis antigen genes among seminomatous and nonseminomatous testicular germ-cell tumors. Genes Chromosom Cancer 43:104–112. doi:10.1002/gcc.20160

    Article  CAS  PubMed  Google Scholar 

  13. Noguchi T, Mattei MG, Oberlè I et al (1987) Localization of the mcf.2 transforming sequence to the X chromosome. EMBO J 6:1301–1307

    CAS  PubMed  Google Scholar 

  14. Kamynina E, Kauppinen K, Duan F et al (2007) Regulation of proto-oncogenic dbl by chaperone-controlled, ubiquitin-mediated degradation. Mol Cell Biol 27:1809–1822. doi:10.1128/MCB.01051-06

    Article  CAS  PubMed  Google Scholar 

  15. Mostofi FK (1973) Tumors of the male genital system (fasc8). Armed Forced Institute of Pathology, Washington

    Google Scholar 

  16. Schmidt L, Duh FM, Chen F et al (1997) Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16:68–73. doi:10.1038/ng0597-68

    Article  CAS  PubMed  Google Scholar 

  17. Zhuang Z, Park WS, Pack S et al (1998) Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet 20(1):66–69. doi:10.1038/1727

    Article  CAS  PubMed  Google Scholar 

  18. Eva A, Aaronson SA (1985) Isolation of a new human oncogene from a diffuse B-cell lymphoma. Nature 316:273–275. doi:10.1038/316273a0

    Article  CAS  PubMed  Google Scholar 

  19. Razzini G, Brancaccio A, Lemmon MA et al (2000) The role of the pleckstrin homology domain in membrane targeting and activation of phospholipase Cbeta(1). J Biol Chem 275:14873–14881. doi:10.1074/jbc.275.20.14873

    Article  CAS  PubMed  Google Scholar 

  20. Zheng Y (2001) Dbl family guanine nucleotide exchange factors. Trends Biochem Sci 26:724–732. doi:10.1016/S0968-0004(01)01973-9

    Article  CAS  PubMed  Google Scholar 

  21. Erickson JW, Cerione RA (2004) Structural elements, mechanism, and evolutionary convergence of Rho protein-guanine nucleotide exchange factor complexes. Biochemistry 43:837–842. doi:10.1021/bi036026v

    Article  CAS  PubMed  Google Scholar 

  22. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167–180. doi:10.1038/nrm1587

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt A, Hall A (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16:1587–1609. doi:10.1101/gad.1003302

    Article  CAS  PubMed  Google Scholar 

  24. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269. doi:10.1146/annurev.cellbio.21.020604.150721

    Article  CAS  PubMed  Google Scholar 

  25. Hart MJ, Eva A, Evans T et al (1991) Catalysis of guanine nucleotide exchange on the Cdc42Hs protein by the dbl oncogene product. Nature 354:311–314. doi:10.1038/354311a0

    Article  CAS  PubMed  Google Scholar 

  26. Galland F, Pirisi V, de Lapeyriere O et al (1991) Restriction and complexity of Mcf2 proto-oncogene expression. Oncogene 6:833–839

    CAS  PubMed  Google Scholar 

  27. Ron D, Tronick SR, Aaronson SA et al (1988) Molecular cloning and characterization of the human dbl proto-oncogene: evidence that its overexpression is sufficient to transform NIH/3T3 cells. EMBO J 7:2465–2473

    CAS  PubMed  Google Scholar 

  28. Hirsch E, Pozzato M, Vercelli A et al (2002) Defective dendrite elongation but normal fertility in mice lacking the Rho-like GTPase activator Dbl. Mol Cell Biol 22:3140–3148. doi:10.1128/MCB.22.9.3140-3148.2002

    Article  CAS  PubMed  Google Scholar 

  29. Rapley EA, Crockford GP, Easton DF et al (2003) Localisation of susceptibility genes for familial testicular germ cell tumour. APMIS 111:128–133. doi:10.1034/j.1600-0463.2003.11101171.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Foundation of Heilongjiang Province China (Grand number: LC06C34) and Post- doctor Science Foundation of China (Grand number: 20060390239).

Conflict of interest statement

There is no other actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhang.

Additional information

W.-H. Xu and C. Zhang have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, WH., Zhang, C., Zhao, WM. et al. Mutational analysis of proto-oncogene Dbl on Xq27 in testicular germ cell tumors reveals a rare SNP in a patient with bilateral undescended testis. World J Urol 27, 811–815 (2009). https://doi.org/10.1007/s00345-009-0408-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-009-0408-y

Keywords

Navigation